What does it mean for a graph to be vertex-transitive?

The graph $G = (V, E)$ is vertex transitive if for every pair of vertices $v, w \in V$, there is an automorphism of G sending v to w.

Let G be a simple vertex-transitive graph. Assume that G is a union of two disjoint connected graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. That is:

$$G = G_1 \cup G_2 \quad \text{and} \quad G_1 \cap G_2 = \emptyset.$$

Show that $|V_1| = |V_2|$.

Choose a vertex $x \in V_1$ and $y \in V_2$. Since G is vertex transitive, there is an automorphism, given by the bijection

$$\theta: V \to V, \quad \text{and} \quad \eta: E \to E$$

such that $\theta(x) = y$. Let z be any other vertex in V_1. Since G_1 is connected, there is path

$$x = v_1, e_1, v_2 \ldots e_{k-1}, v_k = z$$

connecting x to z. The image of this path

$$y = \theta(x) = \theta(v_1), \eta(e_1), \theta(v_2) \ldots \eta(e_{k-1}), \theta(v_k) = \theta(z)$$

connects $y = \theta(x)$ to $\theta(z)$. But there is no edge between G_1 and G_2. Hence this path is contained in G_2 and, in particular, $z \in G_2$. This prove that

$$\theta(V_1) \subset V_2 \implies |V_1| \leq |V_2|.$$

Similar, we can show $\theta^{-1}(V_2) \subset V_1$ and hence $|V_2| \leq |V_1|$. Therefore, $|V_1| = |V_2|$.

• What does it mean for a graph to be vertex-transitive?