1. List all tournaments with five vertices, up to isomorphism. Prove the list is complete.

2. Let G be a simple connected graph with n vertices and let v, w be two non-connected vertices in G so that $d(v) + d(w) \geq n$. Let H be the graph constructed from G by adding a new edge uv. Prove that G has a hamilton cycle iff H has one.

3. Let G be a loopless graph each of whose vertices has valence ≥ 3. Prove that G has a cycle of even length.

4. m identical pizzas are to be shared equally amongst n students.
 (a) Show how this goal can be achieved by dividing the pizzas into a total of $m + n - d$ pieces, where d is the greatest common divisor of m and n.
 (b) By considering a suitable bipartite graph, show that no division into a smaller number of pieces will achieve the same objective.

5. Show that a connected graph of diameter d has a spanning tree of diameter at most $2d$.