To receive full credit you must show all your work. If you run out of room for an answer, continue on the back of the page.

This exam has 4 questions, for a total of 40 points.

1. (10 points) Define the following terms and expressions:

(a) Partial ordering.

A partial ordering on a set \(X \) is a relation that is transitive, irreflexive and anti-symmetric.

(b) Tournament.

A tournament is a directed graph \(G \) such that, for every two vertices \(v \) and \(w \), either \((v, w)\) or \((w, v)\) is an arc in \(G \) (not both).

(c) Degree sequence.

The degree sequence of a graph \(G \) is the sequence of integers

\[
d(v_1) \leq d(v_2) \leq \ldots \leq d(v_n).
\]

where \(v_i \) are vertices of \(G \) and \(d(v_i) \) is the degree of \(v_i \) in \(G \).

(d) Spanning sub-tree.

The spanning subtree of a graph \(G \) is a subgraph \(T \subset G \) that is a tree and has the same vertex set as \(G \).

(e) Hamiltonian.

A hamiltonian for a graph \(G \) is a spanning subgraph of \(G \) that is a cycle.
2. (10 points) Let G be the Peterson graph depicted below.

(a) Is G acyclic? (Explain with an argument or an example.)

No. The graph $(w_1 - w_2 - w_3 - w_4 - w_5 - w_1)$ is a cycle.

(b) Does G have a Hamilton Path? (Explain with an argument or an example.)

Yes. Namely $(w_1 - w_2 - w_3 - w_4 - w_5 - v_5 - v_2 - v_4 - v_1 - v_3)$.

(c) Give an explicit automorphism of G sending v_1 to w_2. You do not need to verify that the map you write is in fact an automorphism.

Here is one:

$v_1 \rightarrow w_2, \quad v_2 \rightarrow v_4, \quad v_3 \rightarrow w_3, \quad v_4 \rightarrow v_2, \quad v_5 \rightarrow w_4, \quad w_1 \rightarrow w_1, \quad w_2 \rightarrow v_1, \quad w_3 \rightarrow w_3, \quad w_4 \rightarrow v_5, \quad w_5 \rightarrow w_5$.

(Bonus) Is there an automorphism of G sending $v_1 w_1$ to $w_1 w_2$?

Yes, the above map works here as well.
3. (10 points) Show that if a graph G has no odd cycles then it is bipartite.

It is enough to show the problem for each connected component. Hence, without loss of generality, we can assume G is connected.

Let v be any vertex in G. Define X be the set of vertices x in G so that the shortest path from v to x has an even length. Let Y be the complement of X, namely, the set of vertices y so that the shortest path from v to y has an odd length.

Then there is no edge between vertices $x, x' \in X$, otherwise, the union of paths $[v, x], [v, x']$ and the edge xx' is an odd cycle in G. Similarly, there is no edge between vertices $y, y' \in Y$ because otherwise, the union of paths $[v, y], [v, y']$ and the edge yy' is an odd cycle in G. Therefore, G is bipartite.

(Bonus) Show that if G is triangle free and $\delta > \frac{2n}{5}$ then G is bipartite.

We show by induction that G has no odd cycles. We know G has no 3–cycles. Assume for contradiction that there is a 5–cycle $v_1 - v_2 - v_3 - v_4 - v_5$. Let V_i be the set of vertices adjacent to v_i. Then

$$\sum_{i=1}^{5} |V_i| > 5 \times \frac{2}{5}n = 2n.$$

Hence, by the pigeonhole principle, one vertex x is contained in at least 3 of them. That is, x is connected to two adjacent vertices, which means there is a triangle. This is a contradiction.

In general, assume for contradiction that there is a $(2k+1)$–cycle $v_1 - \ldots - v_{2k+1}$ $(k > 2)$ and no shorter odd cycles. As above, let V_i be the set of points adjacent to v_i. Then

$$\sum_{i=1}^{2k+1} |V_i| > (2k + 1) \times \frac{2}{5}n > 2n.$$

Hence, by the pigeonhole principle, one vertex x is contained in at least 3 of them, namely v_p, v_q, v_r. If any of these are adjacent, then we have a triangle. Otherwise, there a pair (say v_i, v_j) where $i - j$ is odd and $|i - j| \leq (2k-2)$. Then, subpath path $[v_p, v_q]$ in the the $(2k+1)$–cycle union the edges v_px, xv_q is an odd cycle of smaller length. That is contradiction.

Since there are no odd cycles, by the first part of the problem, G is bipartite.
4. (10 points) Let $G[X,Y]$ be a simple 4–regular bipartite graph with 12 vertices. Show that G contains a 4–cycle.

Since G is regular, X and Y have the same size. That is each set has exactly 6 vertices. Pick $x_1, x_2 \in X$ and let V_1 and V_2 be the set of vertices they connect to respectively. Note that V_1 and V_2 are subsets of Y and have 4 elements each. But Y has 6 elements. Hence $V_1 \cap V_2$ has at least 2 elements, y_1, y_2. Then

$$x_1 - y_1, x_2 - y_2 - x_1$$

is a 4-cycle.