1. Exercises from 3.2

In this tutorial we’ll study different ways of representing smooth curves. There are three principle ways to do this. For curves in \(\mathbb{R}^2 \), they are as follows:

1. Explicitly, as the graph of a function \(y = f(x) \)
2. Explicitly by a parameterization \(t \mapsto (f_1(t), f_2(t)) \)
3. Implicitly, by the vanishing of a function \(S = \{(x, y) \in \mathbb{R}^2 \mid F(x, y) = 0\} \)

The implicit function theorem implies the local equivalence of these statements.

We say that a curve is smooth if every point has a neighbourhood on which the curve is the graph of a differentiable function. There are two obvious ways a curve can fail to be smooth: (1) It can intersect itself, or (2) it can have a cusp.

Example of a smooth curve: Let \(S = \{(x, y) \mid F(x, y) = y - x^2 = 0\} \). We can also think of \(S \) as the graph of the map \(f : x \mapsto x^2 \), or alternatively, as the image of the curve \(\gamma(t) : (-\infty, \infty) \to \mathbb{R}^2 \), \(\gamma(t) = (t, t^2) \). This curve is smooth almost by definition, since it is the map of \(y = f(x) = x^2 \), a differentiable map.

Example of a non-smooth curve: Let \(S = \{(x, y) \mid x^3 - y^2 = 0\} \), then we can define \(S \) piecewise as a curve by:

\[
\gamma(t) = (t^2, t^3) \quad t \in (-\infty, \infty)
\]

Alternatively, we can think of \(S \) as the graph of the function \(f(y) = y^{2/3} \). Notice though that this is not differentiable at the origin, since \(f'(y) = (2/3)y^{-1/3} \) is not defined at \(y = 0 \). This shows that \(S \) is not a smooth curve.

Problem 1. Let \(F(x, y) = xy(x+y-1) \), and set \(S = \{(x, y) \mid F(x, y) = 0\} \). Sketch \(S \). Is \(S \) smooth?

Near which points is \(S \) the graph of a function \(y = f(x) \), or \(x = f(y) \)?

- \(F(x, y) = 0 \) if and only if \(x = 0 \), or \(y = 0 \), or \(y = 1 - x \).
- (Draw \(S \)).
- Thm. 3.11 says that if \(a \in S \) and \(\nabla F(a) \neq 0 \), then \(S \) is the graph of a \(C^1 \) function in a neighbourhood of \(a \). Taking the contrapositive, if we want to find possible points where the curve \(S \) is not smooth, then we should look for points in \(S \) such that \(\nabla F(a) = 0 \).

\[
\nabla F = \begin{pmatrix}
y(2x + y - 1 + xy) \\
x(2y + x - 1 + xy)
\end{pmatrix}
\]

- Case 1: \(x = 0 \) and \(y = 0 \).
- Case 2: \(y = 0 \) and \(x \neq 0 \), then \(2y + x - 1 + xy = x - 1 = 0 \) implies \(x = 1 \).
- Case 3: \(x = 0 \) and \(y \neq 0 \), then \(2x + y - 1 + xy = y - 1 = 0 \) implies \(y = 1 \).
- Case 4: \(x \neq 0 \) and \(y \neq 0 \), then \(2y + x - 1 + xy = 0 \) and \(2x + y - 1 + xy = 0 \). Subtracting the second from the first gives \(y = x \). Now we need \(x^2 + 3x - 1 = 0 \), which can be solved to give \(y_0 = x_0 = (-3 \pm \sqrt{13})/2 \). However, \(F(x_0, y_0) \neq 0 \) so this point is not in \(S \).
- Near each of the points where \(\nabla F = 0 \), \(S \) is a union of two lines; therefore \(S \) could not be the graph of a single-valued function near any of these points.
- We have found the points of \(S \) such that \(\nabla F = 0 \), so by thm. 3.11 we know that \(S \) can be represented by the graph of a function near every point except \((0, 0), (0, 1), \) and \((1, 0)\).

Problem 2. Let \(\gamma(t) = (t^3 - 1, t^3 + 1) \). Is \(\gamma(t) \) a smooth curve? Sketch the curve. Examine \(S \) near any points where \(\gamma'(t) = 0 \).

- If we take \(x = \gamma_1(t), y = \gamma_2(t) \), then \(x - y + 2 = 0 \).
- Define \(F(x, y) = x - y + 2 \), then \(\nabla F(x, y) = (1, -1) \neq 0 \) so the curve \(\gamma(t) \) must be smooth
• (Sketch the plane)
• Notice that $\gamma'(t) = (3t^2, 3t^2)$ which has a zero at $t = 0$, however, the curve is still smooth at the point $(-1, 1)$.