Let X be a topological space.
Let $S \subseteq X$

The **relative topology** on S (as a subset of X) is the topology where a subset U of S is open if there exists V, an open subset of X such that $U = V \cap S$

Eg. $X = \mathbb{R}$ usual topology
$S = [0,1]$.

$U = (3/4, 1]$. (is an open subset on relative topology but not open in \mathbb{R})

Recall: If $f: X \rightarrow Y$ is continuous, if $f^{-1}(U)$ is open (in X) whenever U is open (in Y).

Definition: The topology X is disconnected if there exists U,V open subsets of X such that $X = U \cup V$

& $U \cap V = \emptyset$ (and neither U nor V is \emptyset), If there is no such disconnection, then X is connected.

Theorem: If X is connected topological space, and $f:X \rightarrow Y$ is continuous, then $f(X)$ is a connected topological space in the relative topology as a subset of Y

Proof: Suppose $f(x)$ was disconnected.
Then $f(x) = U$, Union U_2, each U_i is open subset of $f(x)$
$U_1 \cap U_2 = \emptyset$, $U_1 \neq 0$, $U_2 \neq 0$.
There exists V_1,V_2 open subsets of Y such that
$U_i = V_1 \cap f(X) \text{ } & \text{ } U_2 = V_2 \cap f(X)$

Let $W_1 = f^{-1}(V_1)$ & $W_2 = f^{-1}(V_2)$

f continuous $\Rightarrow W_1,W_2$ open (definition – inverses are open)

If $x \in W_1 \cap W_2$, then $f(x) \in V_1 \cap V_2$. But also $f(x) \in f(X)$
$\therefore f(x) \in V_1 \cap V_2 \cap f(x) = (V_1 \cap f(x)) \cap (V_2 \cap f(x)) = U_1 \cap U_2$

But $U_1 \cap U_2 \neq 0$, so no such x.
$\therefore W_1 \cap W_2 = \emptyset$, clearly $W_1 \cup W_2 = X$.
U_1 \neq 0 \Rightarrow W_1 \neq \emptyset, U_2 \neq 0 \Rightarrow W_2 \neq \emptyset
\therefore W_1 \cup W_2 is a disconnection of X. Contradiction.

Corollary: If \(f: [a,b] \to \mathbb{R} \), then \(f \) assumes all values between \(f(a) \) & \(f(b) \) (Intermediate Value Theorem)

Proof: \([a,b]\) is connected (in its relative topology) – this really requires proof.
By above theorem, \(f([a,b]) \) (image) is connected.
Suppose \(f(a) < f(b) \) (Etc. if other way as usual).

Suppose \(f(a) < k \leq f(b) \) & no \(x \in [a,b] \) satisfies \(f(x) = k \).

Must show: not possible.

Let \(U_1 = \{ y: y < k \} \) \(U_2 = \{ y: y > k \} \)
\(U_1 \) & \(U_2 \) open, \(f \) continuous \(\Rightarrow f^{-1}(U_1) \) & \(f^{-1}(U_2) \) are open.

Claim: \(f^{-1}(U_1) \) & \(f^{-1}(U_2) \) is a disconnection of \([a,b]\).
Since \(f(x) \neq k \) \(\forall x \in [a,b] = f^{-1}(U_1) \cup f^{-1}(U_2) \)
\(f^{-1}(U_1) \neq \emptyset \) \((a \in f^{-1}(U_1)) \), \(f^{-1}(U_2) \neq \emptyset \) \((b \in f^{-1}(U_2)) \)
\(f^{-1}(U_1) \cap f^{-1}(U_2) = \emptyset \).

Contradicts \([a,b]\) being connected.

Homeomorphic Examples
\(\square\) \(\square\) – yes
\(\square\) \(\square\) – no because connectedness is not preserved.

\(\square\) \(\square\) No it is not, if you take a point out of ___, and get ___, this is disconnected but the circle will still be connected.

Definition: A component of a topological space is a connected subset of the space that is not properly contained in any other connected subset (ie., a maximal connected subset of the space).

Theorem: If each of \(S_\alpha \) is a connected subset of a topological space \(X \), and if \(\exists x \in \cap S_\alpha \),
then \(U S_\alpha \) is connected.

Proof: If \(U S_\alpha \) is disconnected, \(U S_\alpha = U_1 \cup U_2 \), each \(U_i \) open, non empty, \(U_1 \cap U_2 = \emptyset \) (disjoint).

There exists \(V_1, V_2 \) open in \(X \) with \(U_1 = V_1 \cap \left(U S_\alpha \right) \)
\(U_2 = V_2 \cap \left(U S_\alpha \right) \)

\(V_1 \cap S_2 \) \(V_2 \cap S_2 \)
\(x \in U_1 \cup U_2 \). Suppose \(x \in U_1 \) (etc if \(x \in U_2 \))
there exists \(\alpha_0 \) such that \(S_{\alpha_0} \cap U_2 \neq \emptyset \).

Then \((V_1 \cap \left(U S_{\alpha_0} \right) \cup (V_2 \cap \left(U S_{\alpha_0} \right)) \) is a disconnection of \(S_{\alpha_0} \)

Definition: A collection \(\{ U_\alpha \} \) of sets covers a subset \(S \) if \(S \subset U_\alpha \). A subcovering of a covering
\{U_\alpha\} is a subcollection of the U_\alpha 's which still covers S.