Math 246Y: Homework number 1
Due Tuesday, October 14, 2003 at 6:10 PM sharp!

(1) We know that multiplication of integers is commutative; i.e. \(ab = ba \)
for all pairs of integers \(a \) and \(b \). Prove that, for every natural number \(n \), the product of \(n \) integers is independent of the order of the factors.

(2) Is \(3^{5729} - 5 \) divisible by 10? Prove that your answer is correct.

(3) Prove that \(4 \times 7^{2003} + 3 \) is divisible by at least one prime that leaves remainder 3 upon division by 4 (i.e. this prime is of the form \(4n + 3 \) for some \(n \in \mathbb{Z} \)).

(4) Suppose that \(p \) is a prime and \(a \) and \(k \) are any two positive integers. Prove that \(a^p \) is congruent to \(a \) modulo \(p \).

(5) Suppose that \(a \) is an integer. Show that if \(a^3 \) is of the form \(4n + 3 \) (for some \(n \in \mathbb{Z} \)), then \(a \) is of the form \(4m + 3 \) (for some \(m \in \mathbb{Z} \)). Hint: Congruences can be useful here.