(1) Show that there is an isomorphism of Lie groups \(\mathbb{R}^\times \to \mathbb{R} \times \mathbb{Z}/2 \) (where \(\mathbb{R}^\times \) is a group under multiplication and \(\mathbb{R} \) is a group under addition). Use this fact to show that \(\mathbb{R}^\times \) has two different structure of a real algebraic group. Show that these two different structures are non-isomorphic by showing that their complexifications are different.

(2) (a) Show that every algebraic representation of \(GL_n(\mathbb{R}) \) on (finite-dimensional) complex vector space is complete reducible (i.e. is the direct sum of irreducible subrepresentations).

(b) Give an example of a non-algebraic representation of \(GL_n(\mathbb{R}) \) on a (finite-dimensional) complex vector space which is not complete reducible.

(3) Consider \(G = SO_{2n}(\mathbb{C}) \). Find the roots and coroots of \(G \) as well the \(\psi_\alpha : SL_2(\mathbb{C}) \to SO_{2n}(\mathbb{C}) \).

Here is a suggestion to help you get started. Recall that \(SO_{2n}(\mathbb{C}) \) is the automorphisms of \(\mathbb{C}^{2n} \) which preserve a non-degenerate symmetric bilinear form \(\langle \cdot, \cdot \rangle \). Choose a basis \(v_1, \ldots, v_n, v_{-1}, \ldots, v_n \) for \(\mathbb{C}^{2n} \) such that

\[
\langle v_i, v_j \rangle = \begin{cases}
1, & \text{if } i = j \pm n \\
0, & \text{otherwise}
\end{cases}
\]

Then the maximal torus is given by those elements of \(SO_{2n}(\mathbb{C}) \) which are diagonal with respect to this basis.

(4) Consider the group \(GO_{2n}(\mathbb{C}) \) which is called the orthogonal similitude group. It consists of those automorphisms of \(\mathbb{C}^{2n} \) which preserve the bilinear form up to a scalar. In other words for each \(g \in G \), there exists a scalar \(a \in \mathbb{C}^\times \) such that \(\langle gv, gw \rangle = a \langle v, w \rangle \) for all \(v, w \in \mathbb{C}^{2n} \). Find the root datum of \(GO_{2n}(\mathbb{C}) \) and compare with \(SO_{2n}(\mathbb{C}) \).

(5) Show that \(\Lambda^2 \mathbb{C}^4 \) carries a natural non-degenerate symmetric bilinear form. Use this fact to define a 2-to-1 cover \(SL_4(\mathbb{C}) \to SO_6(\mathbb{C}) \). What does this map look like on the level of root data?