(1) Let G be a finite group acting on a finite set X. Explain how to construct a representation of G on $V = \mathbb{C}[X]$. Prove that $\chi_V(g)$ is the number of fixed points of g acting on X.

(2) Let V be the 2-dimensional irreducible representation of S_3. Using the character table computed in class, decompose $V^\otimes n$ as a representation of S_3.

(3) Find the character table of S_4.

(4) Let G be a finite group and V be an irreducible representation. Prove that the dimension of V divides the size of G.

(5) Prove that if G is a finite group, then it is impossible to find a proper subgroup T, such that every element of G is conjugate into T.

Use this to prove that if G is a finite group and T is a proper subgroup, then the map $\text{Rep}(G) \rightarrow \text{Rep}(T)$ (given by restriction of representations) is not injective.

(6) Take $T = U(1)^2$, thought of as 2×2 unitary diagonal matrices. T acts on \mathbb{C}^2 in the obvious manner. Decompose $(\mathbb{C}^2)^\otimes n$ as a representation of T. (This means find all the weight spaces and their dimensions.) Do the same thing for $\text{Sym}^n \mathbb{C}^2$.

(7) Consider \mathbb{C}^\times and its coordinate ring $R = \mathcal{O}(\mathbb{C}^\times) = \mathbb{C}[z, z^{-1}]$.

Define a \mathbb{C}-antilinear ring homomorphism $\sigma : R \rightarrow R$ by setting $\sigma(z^n) = z^{-n}$, and extending “antilinearly”, so that $\sigma \left(\sum_n a_n z^n \right) = \sum_n \overline{a_n} z^{-n}$ where $\overline{\cdot}$ denotes complex conjugation.

Prove that $R^\sigma = \{ f \in R : f^\sigma = f \}$ is isomorphic to $\mathbb{R}[x, y]/(x^2 + y^2 - 1)$.

Now generalize this result. If T is a compact torus and $T_\mathbb{C}$ is its complexification, construct an analog of σ and compute its invariants.