Solution to Problem 1a:

\((x, y) = (-1, 2)\) gives 7, and so henceforth assume \(p \neq 7\). Then working modulo 7, we see that \(x^2 + xy + 2y^2 \equiv (x - 3y)^2\), and thus any \(p\) representable in such a way must be a quadratic residue mod 7, and hence either 1, 2 or 4. Thus we only need prove sufficiency. So assume that \(p\) is a quadratic residue mod 7.

Consider the field \(K = \mathbb{Q}(\sqrt{-7})\). Then since \(-7 \equiv 1 \mod 4\) we learn that \(\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{Z} \cdot \frac{1 + \sqrt{-7}}{2}\). Noting \(Nm_{K/\mathbb{Q}}(x + y \cdot \frac{1 + \sqrt{-7}}{2}) = x^2 + xy + 2y^2\), we see that we must determine which primes \(p\) can be written as \(Nm_{K/\mathbb{Q}}(\alpha)\) for \(\alpha \in \mathcal{O}_K\). Now, the Minkowski bound immediately tells us that the class number of \(K\) is 1, and hence every ideal is principal.

By quadratic reciprocity, since \(p\) is a quadratic residue mod \(-7\), we learn that \(-7\) is a quadratic residue mod \(p\), and hence \(p\) splits in \(K\) as \((p) = P_1P_2\) for prime ideals \(P_1, P_2\) of norm \(p\). Since \(K\) is a PID, let \(P_1 = (\alpha)\). Then \((Nm_{K/\mathbb{Q}}(\alpha)) = (p)\) and hence \(Nm(\alpha) = \pm p\), and since all norms from \(K\) are positive, we get the result.

Solution to Problem 1b:

As in the previous problem, this problem asks for primes which are norms of elements from \(\mathcal{O}_K\), where \(K = \mathbb{Q}(\sqrt{-5})\). The Minkowski bound here is

\[
\sqrt{20} \cdot \frac{2!}{2^2} \cdot \frac{4}{\pi} < \frac{\sqrt{80}}{3} < 3.
\]

Now \(2\mathcal{O}_K\) factors as \(I_2^2\), where \(I_2 = (2, 1 + \sqrt{-5})\). Moreover, \(I_2\) is not principal, as 2 cannot be written as \(x^2 + 5y^2\). Thus, the class group of \(K\) is \(\mathbb{Z}/2\mathbb{Z}\) generated by \([I_2]\).

Now, if \(p\) is an odd prime that doesn’t equal 5, but can be written as \(x^2 + 5y^2\), a congruence check shows that it must be 1 modulo 4, and 1 or 4 mod 5, and thus either 1 or 9 mod 20.

Conversely, suppose \(p\) is either 1 or 9 mod 20. Then since \(p\) is a quadratic residue mod 5, it means that 5 is a quadratic residue mod \(p\) by quadratic reciprocity. Since \(p\) is relatively prime to 20, it follows that \(p\) is unramified in \(K\). Thus, \((p)\) splits as \((p) = P_1P_2\). It remains to show that \(P_1\) is principal. Assume it is not for the sake of contradiction. Then \(P_1I_2\) is principal, and thus equals \(\alpha\mathcal{O}_K\) for some \(\alpha \in \mathcal{O}_K\). Thus \(Nm_{K/\mathbb{Q}}(\alpha) = 2p\). However, \(2p\) is not a quadratic residue modulo 5, so this is a contradiction. Thus, \(P_1\) is
principal, and this completes the proof.

Solution to Problem 2

We first claim that the class group of K is trivial. Indeed, the Minkowski bound is $\sqrt{21}/2 < 3$. Moreover, $2\mathcal{O}_K$ is a prime ideal, and is thus principal. Thus, the class group of K is indeed principal.

Assume that L is a quadratic extension of K which is unramified. Since K contains the second roots of unity, we can write $L = K(\sqrt{d})$, where we may multiply d by any square in K. Since $d\mathcal{O}_L$ is a square in L, and L is unramified over K, it follows that $d\mathcal{O}_K$ is a square in K as well. Indeed, if $d\mathcal{O}_L = \prod_i Q_i^{2m_i}$ or prime ideals Q_i of \mathcal{O}_L, then by unique factorization one can verify that we must have $d\mathcal{O}_L = \prod_i P_i^{2m_i}$ where P_i is the unique prime ideal of \mathcal{O}_K lying under Q_i.

Now, since \mathcal{O}_K is a PID, we can write $d\mathcal{O}_K = \alpha^2\mathcal{O}_K$, and as $L = K(\sqrt{d}/\alpha^2)$ we may as well replace d by d/α^2 and thus assume that $d \in \mathcal{O}_K^\times$.

Next, note that $\mathcal{O}_K^\times \cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, and thus $\mathcal{O}_K^\times/(\mathcal{O}_K^\times)^2 \cong (\mathbb{Z}/2\mathbb{Z})^2$. Thus there are only 3 candidate fields L to check. It is straightforward to verify that $\beta = 5 - \sqrt{21}/2$ is a fundamental unit, and thus the 3 candidate fields are

$$K(\sqrt{\beta}), K(\sqrt{-\beta}), K(\sqrt{-1}).$$

As $3\beta = \left(\frac{3-\sqrt{21}}{2}\right)^2$, the 3 candidate fields can be rewritten as

$$K(\sqrt{3}), K(\sqrt{-1}), K(\sqrt{-3}).$$

Next, note that the first two fields contain $\mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-7})$ resp., whose discriminants are divisible by 2. Thus the prime 2 ramifies in these fields, but it does not ramify in K. It follows that the primes about 2 in K must ramify in $K(\sqrt{-3})$ and $K(\sqrt{-1})$.

As for $L = K(\sqrt{-3})$, we claim that this field is unramified over K. By the Dedekind-Kummer theorem, as $x^2 - 3$ is separable modulo all primes distinct from 2, 3 it follows that the only primes of K ramified in L must lie above 2 or 3. But similarly, we can write $L = K(\sqrt{-7})$, and applying the same argument to the polynomial $x^2 - 7$ shows that only the primes of K that lie above 2 may ramify in L. Thus we will be done if we can show that 2 does not ramify in L.

To see this, note first that as $L = \mathbb{Q}(\sqrt{-3}, \sqrt{-7})$ it is Galois over \mathbb{Q} with Galois group $\mathbb{Z}/2\mathbb{Z}$. Now let Q be any prime of L above 2, and let I_Q be the inertia group of Q. Then if I_Q is non-trivial, we may find a $\mathbb{Z}/2\mathbb{Z}$ quotient of the Galois group such that the image of I_Q in this quotient remains non-trivial. Hence, 2 must ramify in at least one of the 3 quadratic fields contained in L. But these are $\mathbb{Q}(\sqrt{-3}), \mathbb{Q}(\sqrt{-7}), \mathbb{Q}(\sqrt{21})$, and since 2 does not ramify in all of them this is a contradiction. Hence 2 is unramified in
Solution to Problem 3a

Note first that K cannot contain any roots of unity besides ± 1, since K is Galois of odd degree and thus must be totally real. Let P_1, \ldots, P_r be the ramified primes of K over \mathbb{Q}, and p_1, \ldots, p_r the rational primes under them, so that $p_i \mathcal{O}_K = P_i^3$. Let the Galois group of K over \mathbb{Q} be written as $G = \{1, \sigma, \sigma^2\}$. An important observation is that the ideals P_i are fixed by the group G.

Now, consider the homomorphism $\phi : (\mathbb{Z}/3\mathbb{Z})^r \rightarrow \text{Cl}(K)[3]$ given by

$$(a_1, \ldots, a_r) \mapsto \prod_i P_i^{a_i}.$$

We claim that the kernel of ϕ is at most of size 3, which will solve the problem, as it implies that size of the image of ϕ is at least $3^r - 1$.

To see this, let $\vec{a} \in \ker \phi$ so that $I := \prod_i P_i^{a_i}$ is principal. Say $I = (x)$. Then as $I = \sigma(I)$ we have that $x/\sigma(x) \in \mathcal{O}_K^\times$.

Lemma 0.1. Consider the map $h : \mathcal{O}_K^\times / \pm 1 \rightarrow \mathcal{O}_K^\times / \pm 1$ given by $h(u) = u/\sigma(u)$. Then the image of h has index of size 3.

Proof. Consider the logarithmic embedding $\log_K : \mathcal{O}_K^\times \rightarrow \sum_{g \in G} (\mathbb{R}^\times)_g$ given by the archimedean embeddings of K. We know from Dirichlet’s unit theorem that $\log_K(\mathcal{O}_K^\times)$ is a lattice of rank 2, contained in the hyperplane of product 1. Moreover, the linear map $1 - \sigma$ acts on this hyperplane with eigenvalues $1 - \omega, 1 - \omega^2$ where ω is a primitive 3rd root of unity. Thus the determinant of $1 - \sigma$ acting on this hyperplane is $(1 - \omega)(1 - \omega^2) = 3$.

Moreover, $\log_K(h(u)) = (1 - \sigma) \log_K(u)$, and \log_K is an isomorphism on $\mathcal{O}_K^\times / \pm 1$ since it only kills the roots of unity. The result follows.

Now, for $I \in \ker \phi$, we define $f(I) \in \text{coker}(h)$ to be the image of $x/\sigma(x)$ in $\text{coker}(h)$. This is well defined as multiplying x by a unit $u \in \mathcal{O}_K^\times$ multiplies the value of $x/\sigma(x)$ by $u/\sigma(u)$, and thus doesn’t change the image in $\text{coker}(h)$. We thus get a homomorphism $f : \ker \phi \rightarrow \text{coker}(h)$. We claim that f is injective. To see this, suppose that $f(\vec{a})$ is trivial. It means that we can write $I = \prod_i P_i^{a_i}$ as (x) such that $x/\sigma(x)$ maps to 1 in $\text{coker}(h)$. Thus, by replacing x by xu for some unit u, we can assume that $x/\sigma(x) \in \pm 1$. Finally, replacing I by I^2 we can assume that $x/\sigma(x) = 1$. This means that $x = \sigma(x)$ and thus that $x \in \mathbb{Q}$. However, the ideal $\prod_i P_i^{a_i}$ only comes from an ideal in \mathbb{Q} if all the a_i are divisible by 3. Thus, f is injective, and thus the size of $\ker \phi$ is at most 3, which completes the proof.

Solution to Problem 3b.

We continue using notation from above.
Note first that the group G acts on $M = \text{Cl}(K)[3]$ in the obvious way. Now, consider that map $\psi : \text{Cl}(K)[3] \to \text{Cl}(K)[3]^G$ given by $\psi([I]) = [I/\sigma(I)]$. Clearly ψ is an endomorphism of $\text{Cl}(K)[3]$. To see that the image of ψ lands in the invariant part of $\text{Cl}(K)[3]^G$, it is enough to show that $[I/\sigma(I)] = [\sigma(I)/\sigma^2(I)]$, or in other words that $[I\sigma(I)\sigma^2(I)] = [\sigma(I^3)]$. However, the LHS is trivial since the norm of any ideal is a rational ideal and thus principal, and the RHS is trivial since I was assumed to be of order 3 in the class group. Thus, ψ is a homomorphism. Clearly, the kernel of ψ is $\text{Cl}(K)[3]^G$, and thus we have proven that $|\text{Cl}(K)[3]| \leq |\text{Cl}(K)[3]^G|^2$.

It thus suffices to bound $|\text{Cl}(K)[3]^G|$ by 3^r. To do this, suppose $[I] = [\sigma(I)]$ for some 3-torsion ideal class $[I]$. Then we can write $I = x\sigma(I)$, and thus taking norms we see that $\text{Nm}_{K/Q}x \in \mathbb{Q} \cap \mathcal{O}_K^\times = \pm 1$. By replacing x by $-x$, we can assume that $\text{Nm}_{K/Q}x = 1$. Thus, by Hilberts theorem 90, we can write $Iy = \sigma(Iy)$ for some $y \in K^\times$. It follows that $Iy = \sigma(Iy)$. Now, expanding Iy as a product of powers of prime ideals, it follows that one may write Iy as the product of powers of the P_i and rational primes. Thus, we see that $[I]$ is contained in the image of the map ϕ we have defined earlier. This image is clearly of size at most 3^r, which completes the proof.

Solution to Problem 3c.

We may proceed exactly as above, only now we need to show that the image of ϕ is of size at most 3^{r-1} (and thus exactly 3^{r-1} by the argument in part a).

To see this, pick an element $u \in \mathcal{O}_K^\times$ such that neither u nor $-u$ is representable as $y\sigma(y)$ for $y \in \mathcal{O}_K^\times$ (such a u exists by the lemma in part a). Now, wlog u has norm 1 and $-u$ has norm -1. Thus, by Hilberts theorem 90 we may write $u = y/\sigma(y)$ for $y \in K^\times$.

Moreover, since $(y) = (\sigma(y))$ we may write (y) as the product of powers of the P_i and rational primes, thus we may write $(y) = \prod_i P_i^{a_i} \cdot q$ for some rational number q. Now, if all the a_i were divisible by 3, then we could write $y = v \cdot q \prod_i P_i^{a_i/3}$ for some $v \in \mathcal{O}_K^\times$, and thus $u = y/\sigma(y) = v/\sigma(v)$ which is a contradiction. Thus the a_i are not all divisible by 3, and so \tilde{a} represents a non-trivial element of the kernel of ϕ, as desired.

Solution to Problem 4a.

Assume p, q are both odd for now. Then pick a natural number a relatively prime to q such that aq is a quadratic residue modulo p. Then by Hensel’s lemma, aq is a square in \mathbb{Q}_p, while aq cannot be a square in \mathbb{Q}_q as it has odd valuation ($v_q(aq) = 1$). Thus the fields are not isomorphic.
Now, assume that \(p = 2 \) and \(q \) is odd. Then as we have shown in class, \(\mathbb{Q}_2 \) has 7 quadratic extensions while \(\mathbb{Q}_p \) has only 3. Thus the fields are not isomorphic.

Solution to Problem 4b.

First note that any automorphism of \(\mathbb{Q}_p \) must preserve 1, and hence must preserve \(\mathbb{Q} \). Since \(\mathbb{Q} \) is dense in \(\mathbb{Q}_p \), it suffices to show that any such automorphism is continuous.

Let \(S = \{ x \in \mathbb{Q}_p \mid 1 + p^3 x^4 \text{ is a square} \} \). It is easy to see that \(S = \mathbb{Z}_p \), since if \(x \not\in \mathbb{Z}_p \) then \(v_p(1 + p^3 x^4) = v_p(p^3 x^4) = 4v_p(x) + 3 \) is odd, and if \(x \in \mathbb{Z}_p \) one may use Hensel’s lemma (the stronger version in the case \(p = 2 \)). Thus any automorphism must preserve \(\mathbb{Z}_p \), and hence \(p^m \mathbb{Z}_p \) for any integer \(m \). Hence valuations are preserved, and thus the automorphism is continuous.

Solution to problem 5

Assume such an \(L \) exists for the sake of contradiction. Let \(G = S_3 \) be the Galois group of \(L/\mathbb{Q}_7 \), and let \(G_i \) be the higher ramification groups. Then as \(G_i/G_{i+1} \) are 7-groups for \(i > 1 \), we conclude that \(G_2 \) is trivial. Moreover, \(G_1 \) is normal in \(G_0 = G \) and thus \(G_1 \) is either trivial, \(S_3 \) or \(A_3 \). Since \(G_0/G_1 \) and \(G_1/G_2 \) are always cyclic, we conclude that \(G_1 = A_3 \). Thus, the unique quadratic subfield \(F \) of \(L \) is unramified over \(\mathbb{Q}_7 \), and thus is the unique unramified extension of \(\mathbb{Q}_7 \). Moreover, \(L \) is cyclic over \(F \) of degree 3. Since \(F \) (and in fact \(\mathbb{Q}_7 \)) contain the 3rd roots of unity, we can write \(L = F(\sqrt[3]{d}) \) for some \(d \in F^\times \). Now,

\[
F^\times = \mathbb{Z}^\times \oplus \mu_{48} \oplus (1 + 7 \mathcal{O}_F),
\]

where \(\mu_{48} \) are the 48’th roots of unity. Thus, we see that \(F^\times/(F^\times)^3 \cong \mathbb{Z}/3^2 \oplus \mu_3 \). It follows that we may take \(d \in \mathbb{Q}_7^\times \), and thus \(\mathbb{Q}_7(\sqrt[3]{d}) \) is a cyclic cubic extension of \(\mathbb{Q}_7 \) contained in \(L \). However, this contradicts Galois theory since \(S_3 \) has no normal subgroups of index 3.