MAT 1110 - Additional exercises

March 8, 2013

Ex. 1: \[\text{Recall that a sequence } 1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1 \text{ of alg. gp. is exact if: } \]
\[\begin{align*}
& (i) \text{ it's set-theoretically exact} \\
& (ii) 0 \rightarrow \text{Lie } K \xrightarrow{dy} \text{Lie } G \xrightarrow{dy} \text{Lie } H \rightarrow 0 \text{ is exact.} \\
\end{align*} \]
(a) Show that \(\psi \) is a closed immersion \(\iff \) \(\psi \) is an immersion and \(d\psi \) is surjective.
(b) \(\text{--- } \psi \) is separable \(\iff \) \(\psi \) is unipotent and \(d\psi \) is surjective.
(c) Deduce the sequence is exact \(\iff \)
\[\begin{cases}
(ii) & \psi \text{ is a closed immersion} \\
(iii) & \psi \text{ is separable}.
\end{cases} \]
(d) If \(\text{char } k = 0 \), show that \((i) \Rightarrow (iii) \).

Ex. 2: If \(N \leq H \leq G \) are closed subgp's, and \(N \triangleleft G \), then the
\(N \)-natural map \(H/N \rightarrow G/N \) is a closed immersion (so we can think of
\(H/N \) as a closed subgroup of \(G/N \)) and we have a canonical iso.
\[(G/N)/(H/N) \approx G/H, \text{ of homog. G-spaces} \]

Ex. 3: Suppose \(N, H \leq G \) are closed subgp's such that \(H \) normalizes \(N \),
show that \(HN \text{ is a closed subgroup of } G \) and that we have a
canonical iso. \(HN/N \approx H/(HN) \) of alg. gp's. \(\text{Assume char } k = 0 \)
Find a counterexample when \(\text{char } k > 0 \).

Ex. 4: Suppose \(\psi : G \rightarrow H \) is a morphism of alg. gp's. If \(\text{char } k = 0 \) show that
\(\psi \) induces an iso. \(G/\ker \psi \approx \text{im } \psi \). If \(\text{char } k > 0 \), find a counterexample
\(\psi \) induces an iso.

Ex. 5: Suppose \(H \) is a closed subgp of an alg. gp \(G \). Show that \(\text{both } H \\
\text{and } G/H \text{ are connected, then } G \text{ is connected.} \) (Use e.g. Springer Ex. 6.5.9(1))

Ex. 6: Suppose \(\psi : G \rightarrow H \) is a morphism of alg. gp's. If \(H_1 \leq H_2 \leq H \) are
\(\text{closed subgp's, show that we have a canonical iso. } \psi^{-1}(H_2)/\psi^{-1}(H_1) \approx H_2/H_1 \).
(\text{Hint: show } \text{Lie } \psi^{-1}(H_i) = (d\psi)^{-1} \text{Lie } H_i). \)