Last Time

Theorem 44(v) states “complete+totally bounded” ⇔ compact. This generalizes Heine–Borel.

\[X \subset \mathbb{R}^n, \quad X \text{ bounded in Euclidean metric } \iff \text{ totally bounded} \]
\[X \text{ closed } \iff X \text{ compete, since } \mathbb{R}^n \text{ complete} \]

Any compact metric space is continuous image of Cantor set! (proof will be linked on course website)

Separation Axioms

\(T_1 \) is equivalent of "points are closed", \(T_2 = \) Hausdorff. \(T_2 \Rightarrow T_1 \).
\(T_2 \) does not imply \(T_1 \), example : finite complement topology.

Definition \(X \) is **regular** or \(T_3 \) if \(X \) is \(T_1 \) and for any closed subset \(C \subset X \) and any \(x \not\in C \), \(\exists \) disjoint open sets \(U \) containing \(x \) and, \(V \supset C \).

\[
\begin{array}{c}
U \\
\mathcal{C} \\
V
\end{array}
\]

Remark \(T_3 \Rightarrow T_2 \) because \(T_3 \) space is \(T_1 \), so we can take \(C = \{y\} \).

Definition \(X \) is **normal** or \(T_4 \) if \(X \) is \(T_1 \) and for any disjoint closed subsets \(C, D \exists \) disjoint open subsets \(U \supset C, V \supset D \).

Remark \(T_4 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \)

\(T_2 \) does not imply \(T_3 \). Take \(X = \mathbb{R}_K \), with basis \((a, b), (a, b) \setminus K\), where \(K = \{\frac{1}{n}, n \geq 1\} \).

Finer top. than \(\mathbb{R} \Rightarrow \mathbb{R}_K \) is \(T_2(\Rightarrow T_1) \)

Take \(C = K \) closed, and choose \(x = 0 \). Suppose \(\exists U, V \) disjoint open, such that \(0 \in U, V \supset K \).
So \(0 \in (-\epsilon, \epsilon) \setminus K \) for some \(\epsilon > 0 \). Pick \(n \), such that \(\frac{1}{n} < \epsilon \). Since \(\frac{1}{n} \in V \Rightarrow \left(\frac{1}{n} - \delta, \frac{1}{n} + \delta\right) \subset V \) some \(\delta > 0 \).
Then points close enough to \(\frac{1}{n} \) will be in \(U \cap V \), contradiction. \(\square \)

Also, \(T_3 \) does not imply \(T_4 \). For example: \(\mathbb{R}^2_1 \). We will see next time that is \(T_3 \). It is not \(T_4 \), see book pg .198.

Theorem 47

If \(X \) is a metrizable topological space, then \(X \) is \(T_4 \).

Proof:

We know \(X \) is \(T_2 \Rightarrow T_1 \). Say topology comes from the metric \(d \) and \(C, D \subset X \) disjoint closed.
For \(x \in C \), \(\exists \varepsilon_x > 0 \) such that \(B_{\varepsilon_x}(x) \cap D = \emptyset \) (since \(D' \) is open)
For \(y \in D \), \(\exists \delta_y > 0 \) such that \(B_{\delta_y}(y) \cap C = \emptyset \).
Let \(U := \bigcup_{x \in C} B_{\varepsilon_x/2}(x) \) open, contains \(C \); \(V := \bigcup_{y \in D} B_{\delta_y/2}(y) \) open, contains \(D \).

\(U, V \) disjoint: if not, \(\exists x \in C, y \in D \) such that \(B_{\varepsilon_x/2}(x) \cap B_{\delta_y/2}(y) \neq \emptyset \), then \(d(x, y) < \varepsilon_x + \delta_y \leq \max(\varepsilon_x, \delta_y) \).
Say \(\varepsilon_x \geq \delta_y \): then \(d(x, y) < \varepsilon_x \), \(y \in B_{\varepsilon_x}(x) \cap D = \emptyset \). Contradiction. □

Theorem 48

If \(X \) is compact \(T_2 \), then \(X \) is \(T_4 \).

In Corollary 39, we saw that \(X \) is \(T_3 \).

\(C, D \subset X \) disjoint + closed. \(\Rightarrow \) \(C, D \) compact as \(X \) is compact.

\(\forall x \in C \), \(\exists U_x \), containing \(x \), \(V_x \supset D \) open + disjoint since \(X \) is \(T_3 \), (note: \(x \notin D \)). As in corollary 39 (as \(C \) is compact).

\(C \subset U_{x_1} \cup \ldots \cup U_{x_n} \) (some \(x_i \in C \)), \(D \subset V_{x_1} \cap \ldots \cap V_{x_n} \). Clearly disjoint. □