Theorem 5

If \mathcal{S} is a subbasis, the $\tau = \{\text{unions of finite intersection of elements of } \tau\}$. This is a topology that is the coarsest topology containing \mathcal{S}.

Proof:

$\mathcal{B} = \{\text{finite intersection } \cap_{i=1}^{n} S_i, S_i \in \mathcal{S}\}$, we need \mathcal{B} to be a basis ($\Rightarrow \tau$ is topology generated by it).

Checking basis criterions

(i) Trivial
(ii) $B_1, B_2 \in \mathcal{B}$, Let $B_1 = S_2 \cap \ldots \cap S_r$, $B_2 = S_{r+1} \cap \ldots \cap S_{r+t}$

$B_1 \cap B_2 = \cap_{i=1}^{r+t} S_i \in \mathcal{B}$

Now we wish to show that this topology is the coarsest topology. Suppose $\tau' \supset \mathcal{S}$ is any topology. It is required to show that $\tau \subset \tau'$. This is true because τ' closed under finite intersections and any unions.

Subspace and Product Topology §15, 16

Definition Suppose (X, τ_X) is a topological space and $Y \subset X$ is a subset. Then the subspace topology of Y in X is $\tau_Y = \{Y \cap U \mid U \in \tau_X\}$.

Check this is a topology!

Theorem 6

The subspace topology is the coarsest topology on Y s.t. the inclusion map $i : Y \to X$ is continuous.

Proof: The map i continuous $\iff i^{-1}(U) = (Y \cap U)$ open in Y, $\forall U$ open in X. The inclusion map is continuous when Y has topology τ_Y. $\iff \tau_Y = \{Y \cap U \mid U \subset X\} \subset \tau'$. Hence τ_Y is coarsest. \square

Theorem 7 (Restriction of (co)domain)

Suppose $f : X \to Y$ is continuous map of topological spaces.

i) If $Z \subset X$ is subset, then $f|_Z : Z \to Y$ is continuous. (if Z has subspace topology).

ii) If $W \subset Y$ is a subset containing $f(X)$, then $g : X \to W$ is continuous. (if W has subspace topology).

Proof:

i) $f|_Z$ is a composite map : $Z \xrightarrow{i} X \xrightarrow{f} Y$. Both i, f are continuous and since composites of continuous maps are continuous. (By Thm 1)

ii) We need to show that if $V \subset W$ is open, then $g^{-1}(V) \subset X$ is open. Note that V is of the form $W \cap U$, where $U \subset Y$ is open. So we have $g^{-1}(V) = g^{-1}(W \cap U) = f^{-1}(W \cap U) = f^{-1}(U)$ because $f(X) \subset W$. Hence $f^{-1}(U)$ is open in X by the continuity of f. \square

Theorem 8

Let X be a topological space and Z, Y be subspaces such that $Z \subset Y \subset X$. The natural topologies on Z coincide.
1) Subspace topology in X
2) Subspace topology in Y, where Y has subspace topology in X.

Proof: (left as an exercise)

Theorem 9

Let X be a topological space and Y be a subset of X. If \mathcal{B}_X is a basis for the topology of X then $\mathcal{B}_Y = \{Y \cap B, \ B \in \mathcal{B}_X\}$ is a basis for the subspace topology on Y.

Proof: Use Thm 4.

Definition Suppose X, Y are topological spaces. Then the projection is $p_1:X \times Y \to X$, $p_2:X \times Y \to Y$. i.e. $p_1(x, y) = x$ and $p_2(x, y) = y$.

Theorem 10

There is a coarsest topology on $X \times Y$ such that projection maps p_1 and p_2 are continuous.

Proof:

p_1, p_2 are continuous $\iff p_1^{-1}(U)$, $p_2^{-1}(V)$ are open in $X \times Y$, for all open U and V in X and Y, respectively. Let $\mathcal{S} := \{ p_1^{-1}(U), \ p_2^{-1}(V) | U \subset X, \ V \subset Y \text{ open} \}$ The topology generated by this subbasis is the coarsest containing \mathcal{S}, i.e. p_1, p_2 are both continuous.

This topology is called the **product topology** on $X \times Y$.

In fact, we can get basis out of the subbasis by taking all finite \cap:

$p_1^{-1}(U_1) \cap \ldots \cap p_1^{-1}(U_i) \cap p_2^{-1}(V_1) \cap \ldots \cap p_2^{-1}(V_j)$ where $U_i \subset X$, $V_j \subset Y$ is open $\forall i, j$

So the basis $= \{ p_1^{-1}(U) \cap p_2^{-1}(V) | U \subset X, \ V \subset Y \text{ open} \} = \{ U \times V | U \subset X, \ V \subset Y \text{ open} \}$

We call $p_1^{-1}(U)$, $p_2^{-1}(V)$ "open cylinders" and $U \times V$ "open box".

Examples

$X = \mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Two topologies:
(1) product topology (\mathbb{R} has standard topology)
(2) standard topology on \mathbb{R}^2.

These two are the same! (Use Thm 3)

- (1) has basis $U \times V$, $U, V \subset \mathbb{R}$ open
- (2) open balls(or disks), $B_d(x, y)$

Theorem 11

If \mathcal{B}_X is a basis for X and \mathcal{B}_Y is a basis for Y, then $\mathcal{B} := \{ B_1 \times B_2 | B_1 \in \mathcal{B}_X, \ B_2 \in \mathcal{B}_Y \}$ is a basis for the product topology.

Proof: Use Thm 4.
Theorem 12

If \(A \subset X, B \subset Y \) are subsets of topological spaces \(X, Y \) then on \(A \times B \) the two natural topologies coincide.

i) Product topology of the subspace topology on \(A, B \)

ii) subspace topology of the product topology on \(X \times Y \).

Basis of topology (i)

i.e. \((A \cap U) \times (B \cap V) \) where \(U \subset X \) and \(V \subset Y \) are open. i.e. (Open subsets of \(A \)) \times (Open subsets of \(B \))

Basis of topology (ii)

\[\text{Thm}^9 \Rightarrow \text{basis for subspace } A \times B : (A \times B) \cap (U \times V) = (A \cap U) \times (B \cap V). \text{ Same basis } \Rightarrow \text{ Same topology.} \]

Order Topology §14

\((X, \preceq) \) is a set together with a linear(or total) order

Example

\((\mathbb{R}, \leq), (\mathbb{Z}, \leq)\) – standard order

If \((X, \preceq), (Y, \preceq') \) then have dictionary order on \(X \times Y \):

say \((x, y) \leq (x', y') \Leftrightarrow (x < x') \text{ or } (x = x' \text{ and } y < y')\)