Office Hours: Mon 10:30 to 12:30

Term test, Oct 27 (Thursday), 2-4 pm

Recall: \(U \subset \mathbb{R}^n \) open means \(\forall x \in U \exists \delta > 0 \) such that \(B_\delta(x) \subset U \).

Note: \(f \) is continuous in \(\epsilon-\delta \) sense if and only if \(f^{-1}(U) \) open in \(\mathbb{R}^m \), \(\forall U \) open in \(\mathbb{R}^n \).

Properties of open subsets of \(\mathbb{R}^n \)

- \(\emptyset, \mathbb{R}^n \) is open
- unions of open subsets are open
- finite intersections of open subsets are open.

Today we will cover the section § 12, 13.

Definition A topological space is a set \(X \) and a collection \(\tau \) of subsets of \(X \) satisfying

1. \(\emptyset, X \in \tau \)
2. If \(U_\alpha \in \tau \) \(\forall \alpha \), then \(\bigcup_\alpha U_\alpha \in \tau \). – any union of \(U \) is in \(\tau \).
3. If \(U_1, \ldots, U_n \in \tau \), then \(\bigcap_{\alpha=1}^n U_\alpha \in \tau \). – finite intersection of \(U \) is in \(\tau \).

Convention We often omit \(\tau \) from the notation (i.e. a topological space \(X \)) and elements of \(\tau \) will be called open sets of \(X \).

Definition A map \(f : X \to Y \) between topological spaces \((X, \tau) \) and \((Y, \tau') \) is continuous if \(f^{-1}(U) \in \tau, \forall U \in \tau' \)

Examples

1. If \(X \) is any set, we can take \(\tau_{\text{disc}} = \{ \text{all subsets of } \tau \} \). This topology is called discrete topology. When \(\tau_{\text{triv}} = \{ \emptyset, X \} \) This topology is called trivial or indiscrete topology.

2. Take \(X = \mathbb{R}^n \) and \(\tau = \{ \text{all "open subsets of last time"} \} \). This topology is called standard topology.

3. \(X = \{a, b\} \). How many topologies on \(X \) ?

 \(\tau_1 = \{ X, \emptyset \} \) – indiscrete topology
 \(\tau_2 = \{ X, \emptyset, \{a\} \} \)
 \(\tau_3 = \{ X, \emptyset, \{b\} \} \)
 \(\tau_4 = \{ X, \emptyset, \{a\}, \{b\} \} \) – discrete topology.

 \(\therefore 4 \) topologies in total.

4. Let \(X \) be any set, \(\tau = \{ \text{all } U \subset X \text{ such that } X \setminus U \text{ is finite} \} \cup \{ \emptyset \} \). This topology is called finite complement topology.

Check the properties

1) immediate

2) \(U_\alpha \in \tau \) for all \(\alpha \). If any \(U_\alpha = \emptyset \) then we can omit it (doesn’t change \(\bigcup_\alpha U_\alpha \)) So \(X \setminus U_\alpha \) is finite for all \(\alpha \).

We wish to show that \(X \setminus \bigcup_\alpha U_\alpha \) is finite. By de Morgan’s law \(X \setminus \bigcup_\alpha U_\alpha = \bigcap_\alpha (X \setminus U_\alpha) \).
This is finite since it is contained in any one of them.

3) \(U_1, \ldots, U_n \in \tau \). If any \(U_n = \emptyset \), then we can omit it again.

\(X \setminus U_i \) is finite \(\forall i \). Hence \(X \setminus \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X \setminus U_i) \) is finite.

Remark. It suffices to check axiom (3) for two subsets, because when \(U_1 \cap U_2 \) open. We can take \((U_1 \cap U_2) \cap U_3 \) and so on. Using mathematical induction, we can show this is true for all \(n \).

Remark. There can be many topologies on a given set \(X \) (see example 3).

Definition. If \(X \) is any set and \(\tau_1 \subset \tau_2 \) are topologies on \(X \), then we say \(\tau_2 \) is finer than \(\tau_1 \). \(\tau_1 \) is coarser than \(\tau_2 \). In this case, we also say \(\tau_1 \) and \(\tau_2 \) are comparable.

Examples:

(1) \(\tau \) is any topology on \(X \), then \(\tau_{\text{inv}} \subset \tau \subset \tau_{\text{disc}} \) (i.e. \(\tau_{\text{inv}} \) and \(\tau_{\text{disc}} \) is the coarsest and finest topology on \(X \), respectively)

(2) In example (3) above \(\{\emptyset, \{a\}, X\} \) and \(\{\emptyset, \{b\}, X\} \) are not comparable.

Continuous functions

Examples

(1) \(f : \mathbb{R}^n \to \mathbb{R}^m \) is continuous in this old \(\epsilon-\delta \) sense if \(\iff \) \(f \) is continuous as a map of topological spaces, provided \(\mathbb{R}^m, \mathbb{R}^n \) have the standard topology.

(2) The identity map \(x \mapsto x \) is continuous for any topological space \((X, \tau) \).

(3) Any map \(f : X \to Y \) between topological spaces \(X, Y \) is continuous provided \(X \) has the discrete topology (\(\therefore f^{-1}(U) \) is automatically open) or \(Y \) has trivial topology. (\(\therefore f^{-1}(X) = X, f^{-1}(\emptyset) = \emptyset. \))

(4) If \(\tau_1 \) and \(\tau_2 \) are topologies on \(X \), then the identity map \((X, \tau_1) \to (X, \tau_2) \). Then this map is continuous if and only if \(\tau_2 \subset \tau_1 \) (i.e. \(\tau_1 \) is finer than \(\tau_2 \))

Theorem 1

If \(f : X \to Y \), and \(g : Y \to Z \) are continuous maps between topological spaces, then \(g \circ f : X \to Z \) is continuous.

Proof: We wish to show that \((g \circ f)^{-1}(U) \) is open in \(X \). Since \((g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \). We know \(g^{-1}(U) \) is open in \(Y \) because \(g \) is continuous \(\implies f^{-1}(g^{-1}(U)) \) is open in \(X \), because \(X \) is continuous. \(\Box \)

Bases and Subbases

Topological definitions of these topics have nothing to do with bases in linear algebra. However, it is useful for describing a topology.

Definition. Given \(X \) is a set. A **basis** for a topology on \(X \) is a collection \(\mathcal{B} \) of subsets of \(X \) such that

1) \(\forall x \in X, \exists B \in \mathcal{B} \) such that \(x \in B \).
(2) $\forall B_1, B_2 \in \mathcal{B}, \forall x \in B_1 \cap B_2 \exists B_3 \in \mathcal{B}$ such that $x \in B_3 \subset B_1 \cap B_2$

Note

(1) $\Leftrightarrow \bigcup_{B \in \mathcal{B}} B = X$
(2) $\Leftrightarrow \forall B_1, B_2 \in \mathcal{B}, B_1 \cap B_2 = \text{union of basis elements}$

The elements of \mathcal{B} are called **basic open sets or basis elements**.

Theorem 2

Suppose \mathcal{B} is a basis on X. Let $\tau := \{\text{all } U \subset X \text{ s.t. } \forall x \in U \exists B \in \mathcal{B} \text{ such that } x \in B \subset U\}$. Then τ is a topology on X. Then we say, τ is “topology generated by basis \mathcal{B}”.

Proof:

(1) $\emptyset, X \in \tau$. For \emptyset, we have nothing to check and $X \in \tau$ by the first basis axiom.
(2) $\bigcup_{\alpha} U_{\alpha} \in \tau$ for all α. To check this, we pick $x \in \bigcup_{\alpha} U_{\alpha} \Rightarrow x \in U_{\alpha}$ for some α. Since $U_{\alpha} \in \tau \exists B \in \mathcal{B} \text{ s.t. } x \in B \subset U_{\alpha} \subset \bigcup_{\alpha} U_{\alpha} \Rightarrow \bigcup_{\alpha} U_{\alpha} \in \tau$.
(3) If $U_1, U_2 \in \tau$, want to show $U_1 \cap U_2 \in \tau$. Pick any $x \in U_1 \cap U_2$

Since $U_i \in \tau \Rightarrow \exists B_i \in \mathcal{B}$ such that $x \in B_i \subset U_i$. By 2nd basis axiom, $\exists B_3 \in \mathcal{B}$ such that $x \in B_3 \subset (B_1 \cap B_2) \subset (U_1 \cap U_2)$.

Examples

(1) $X = \mathbb{R}$ and $\mathcal{B} = \{\text{all open intervals } (a, b) \text{ for } a < b \text{ in } \mathbb{R}\}$.

Check basis axioms
1) We can always pick some neighborhood (or open interval) around any point x.
2) If $x \in (a, b) \cap (c, d) = (\max(a, c), \max(b, d)) \in B$

This topology is standard topology on \mathbb{R}.

(2) Let X be any set, $B = \{ \text{all subsets } \{x\} \text{ with one elemnt} \}$ satisfies both basis axioms.

This topology is discrete topology.