MAT 247S - Problem Set 7

Due Thursday March 26

Questions 2a), 2b), 4, 5 and 7 will be marked.

1. Let \(T \) be the linear operator on \(V = \mathbb{R}^8 \) whose Jordan canonical form is:

\[
\begin{pmatrix}
4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
\end{pmatrix}
\]

a) Find the dot diagram for each eigenvalue of \(T \),

b) Find \(\dim N((T - \lambda \cdot 1_V)^j) \), for every positive integer \(j \) and every eigenvalue \(\lambda \) of \(T \).

c) Find the minimal polynomial of \(T \).

2. Let \(T : \mathbb{R}^8 \to \mathbb{R}^8 \) be the linear operator whose matrix \([T]_\beta\) relative to the standard basis \(\beta \) for \(\mathbb{R}^8 \) is given by

\[
[T]_\beta = \begin{pmatrix}
4 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 4 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 4 & 0 & 0 & -1 & 0 \\
1 & 1 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 \\
\end{pmatrix}
\]

a) Find the dot diagram for each eigenvalue of \(T \),

b) Find the Jordan canonical form of \(T \).

c) Find the minimal polynomial of \(T \).

3. Let \(T \in \mathcal{L}(V) \), where \(V \) is a complex vector space of dimension 10. Suppose that the eigenvalues of \(T \) are \(i \), \(-1 \) and \(\sqrt{3} \), and

\[
\begin{align*}
\dim K_i &= 4, \quad \dim R(T - i \cdot 1_V) = 7 \\
R(T + 1_V) &= R((T + 1_V)^2) \\
\dim K_{\sqrt{3}} &= 3, \quad \dim R(T - \sqrt{3} \cdot 1_V) = 9,
\end{align*}
\]

where \(K_i \) and \(K_{\sqrt{3}} \) are the generalized eigenspaces corresponding to the eigenvalues \(i \) and \(\sqrt{3} \), respectively.

a) Find the Jordan canonical form of \(T \).

b) Find the minimal polynomial of \(T \).
4. Let V be a real vector space. Suppose that $T \in \mathcal{L}(V)$ has characteristic polynomial $f(t) = -(t - 1)^3(t + 1)^4$,

\[
\text{nullity}(T - 1_V) = 3, \quad N(T - 1_V) \subset R((T - 1_V)^2),
\]
and $\text{rank}((T + 1_V)^3) = \text{rank}((T + 1_V)^2) = \text{rank}(T + 1_V) - 1$.

a) Find the dot diagram associated to each eigenvalue of T.
b) Find the Jordan canonical form of T.
c) Find the minimal polynomial of T.

5. Let V be a nonzero n dimensional complex vector space. Assume that n is even. Let $T \in \mathcal{L}(V)$ and let $f(t)$ be the characteristic polynomial of T and let $p(t)$ be the minimal polynomial of T. Assume that $f(t) = (p(t))^2$.

a) Let λ be an eigenvalue of T and let K_λ be the generalized eigenspace of T corresponding to the eigenvalue λ. Prove that $\dim K_\lambda$ is even.
b) Prove that T is diagonalizable if and only if T has $n/2$ distinct eigenvalues.

6. Let T_1 and T_2 be linear operators on a nine-dimensional complex vector space V. Suppose that the characteristic polynomials of T_1 and T_2 are both equal to $-(t - i)^3(t + 3)^3$ and the minimal polynomials of T_1 and T_2 are both equal to $(t - i)^3(t + 3)^2$. Prove that T_1 and T_2 have the same Jordan canonical form if and only if $\dim N(T_1 - i \cdot 1_V) = \dim N(T_2 - i \cdot 1_V)$.

7. Let T be a linear operator on an n-dimensional complex vector space. Suppose that the characteristic polynomial of T is equal to $(-1)^n(t - 3)^n$. Prove that T and $T^2 - 2T$ have the same Jordan canonical form.

8. §7.2, #13. (Note: Results on Jordan canonical form cannot be used to solve this problem because it is not known ahead of time that the characteristic polynomial of T splits over F. For part b), the corollary on page 51 of the text is useful.)

10. Let T_1 and T_2 be nilpotent linear operators on a finite-dimensional vector space. Suppose that T_1 and T_2 have the same minimal polynomial and $\dim N(T_1) = \dim N(T_2)$. Let β be an ordered basis of V and set $A = [T_1]_\beta$ and $B = [T_2]_\beta$.

a) Show that if $\dim V = 6$, then A and B are similar matrices.
b) Show that if $\dim V = 7$, the matrices A and B might not be similar.

11. Let $T : V \to V$ be a linear operator on a finite-dimensional vector space V. Assume that the characteristic polynomial of T splits over F. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the distinct eigenvalues of T. Prove that T is diagonalizable if and only if $N(T - \lambda_j 1_V) = N((T - \lambda_j 1_V)^2)$ for $1 \leq j \leq k$.

12. §7.2, #17.