MAT247S, 2009 Winter, Problem Set 6 Solution

Grader: TAM, Kam Fai, geo.tam@utoronto.ca

1. (a) Since \(W = \bigoplus_{i=1}^l F((T - \lambda I)^{i-1}(x)) \) is \((T - \lambda I)\)-invariant and \(\lambda I \)-invariant, it is also \(T \)-invariant.
(b) By definition \((T - \lambda I)^l(x) = 0\), and \((-1)^l(t - \lambda)^l\) is of deg= \(l = \dim(W) \).
(c) If the minimal polynomial is \((t - \lambda)^k\) for some \(k < l \), then \((T - \lambda I)^k(x) = 0\). Since \(l \) is the smallest one giving \((T - \lambda I)^l(x) = 0\), we must have \(k = l \).

2. By definition of initial vectors, for \(i = 1, 2 \) let \(x_i = (T - \lambda I)^{m_i-1}(y_i) \) with \((T - \lambda I)^{m_i}(y_i) = 0\). If \((T - \lambda I)^{i_1}(y_1) = (T - \lambda I)^{i_2}(y_2)\) for some \(i_i \), then one can show \(m_1 - l_1 = m_2 - l_2 \). From this one can show \(x_1 = (T - \lambda I)^{m_1}(y_1) = (T - \lambda I)^{m_2}(y_2) = x_2 \).

3. (a) Since \(K_\lambda \) is \(T \)-invariant, so it is \(g(T) \)-invariant.
(b) (8 marks total) \((\Rightarrow)\) If \(g(\lambda) = 0 \), then
(2 marks) pick a non-zero eigenvector \(x \in K_\lambda \) (such eigenvector must exist),
(1 mark) we have \(U(x) = g(T)(x) = g(\lambda)x = 0 \), so \(U \) is not invertible.
(\(\Leftarrow\)) Suppose \(U \) is not invertible, so
(1 mark) there is non-zero vector \(x \in K_\lambda \) that \(g(T)(x) = 0 \).
(1 mark) Since \(x \in K_\lambda \), there is positive integer \(p \) so that \((T - \lambda I)^p(x) = 0\).
(2 marks) If we choose the smallest such \(p \), then \(y = (T - \lambda I)^p-1(x) \) is non-zero, and \((T - \lambda I)(y) = 0\), i.e. \(y \) is a non-zero \(\lambda \)-eigenvector.
(1 mark) We have \(U(y) = g(T)(T - \lambda I)^p-1(x) = (T - \lambda I)^p-1g(T)(x) = (T - \lambda I)^p-1(0) = 0 \). On the other hand \(U(y) = g(T)(y) = g(\lambda)y \neq 0 \). We derive a contradiction. Therefore \(U \) is invertible.

REMARK In \((\Leftarrow)\), a number of students pick a \(\lambda \)-eigenvector \(x \), then by saying \(g(T)(x) = g(\lambda)x \neq 0 \) and conclude \(\ker(g(T)) = 0 \) But what you have shown is just \(\ker(g(T)) \cap \ker(T - \lambda I) \neq 0 \).

Alternative solution: Consider \(S = T_{K_\lambda} \) first. We know there is a basis for \(K_\lambda \) so that \(S \) can be block-diagonalized so that each block is of the Jordan-form \(\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & \cdots & 0 & \lambda \end{pmatrix} \). Under such basis \(U = g(S) = \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & \lambda \\
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \end{pmatrix} \) on each block. (Here \(* \) is not necessary 0 or 1, but the value is not important here.) Hence \(U \) is upper triangular with all diagonal entries being \(g(\lambda) \). It is clear that \(U \) is invertible iff \(g(\lambda) \neq 0 \).

4. (a) it is because each \(K_{\lambda_j} \) are linearly independent.
(b) \(\supseteq \) is from definition of \(K_{\lambda_j} \), and \(\subseteq \) is from the fact (iii) above.
(c) (6 marks total) Since $p(T_{K_{\lambda_j}}) = p(T)_{K_{\lambda_j}} = 0$, we have (2 marks) the minimal polynomial $m_{T_{K_{\lambda_j}}}$ divides p.

(2 marks) If $t - \lambda_i$ divides $m_{T_{K_{\lambda_j}}}$ for $\lambda_i \neq \lambda_j$, then $T - \lambda_i I$ is not invertible on K_{λ_j}. This contradicts the fact (iii).

(2 marks) So $m_{T_{K_{\lambda_j}}}$ must of the form $(t - \lambda_j)^k$ for some $k < \lambda_j$, then for polynomial $p'(t) = (t - \lambda_1)^{l_1} \cdots (t - \lambda_j)^{l_j - 1} \cdots (t - \lambda_k)^{l_k}$ it is easy to show $p'(T) \equiv 0$ on each K_{λ_i}, hence is T_0 by fact (i) given. But $\deg(p') < \deg(p)$ contradicts the minimality of p. So $k = l_j$.

(d) (6 marks total) Let the cycle be $\gamma = \{x, \ldots, (T - \lambda_j I)^k(x)\}$ and $W = \text{span}(\gamma) \subseteq K_{\lambda_j}$.

(3 marks) Since the minimal polynomial of T_W is $(t - \lambda_j)^k$, we must have $k \leq l_j$.

(3 marks) If all such cycle have length strictly less than l_j, then $(T - \lambda_j I)^{l_j - 1}$ kills K_{λ_j}, contradicting the minimality of p. Hence at least one cycle has length λ_j.

5.(a) Choose a basis and take T to be block-diagonalized, each block is the Jordan form \(\begin{pmatrix} c & 1 & 0 & \cdots & 0 \\ 0 & c & 0 & \cdots & 0 \\ 0 & 0 & c & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c \end{pmatrix} \), with maximum size d.

(b) The characteristic polynomial must be of the form $(-1)^n(t - c)^{n-1}(t - d)$. The minimality of p forcing $d = c$.

(c) By (b) under suitable bases $[T_1]_{\beta_1} = [T_2]_{\beta_2} = \begin{pmatrix} c & 1 & 0 & \cdots & 0 \\ 0 & c & 0 & \cdots & 0 \\ 0 & 0 & c & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c \end{pmatrix}$. Take U to be the matrix of changing basis.

(d) $T_1 = \begin{pmatrix} \lambda^1 & 1 & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}$, $T_2 = \begin{pmatrix} \lambda^1 & 1 & \lambda \\ \lambda & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{pmatrix}$.

6. (Total 25 marks)

(a) (3 marks) $ch_T(t) = (t - i)^2(t + i)^2$ (2 marks) eigenvalues are $i, -i$.

(b) (2 marks) rank($T - iI$) = 3 (2 marks) rank($T + iI$) = 2 (1 mark) for calculation

(c) (2 marks) $m_T(t) = (t - i)^2(t + i)$

(3 marks) Since by part (b) $T + iI$ kills K_{-i}, while $T - iI$ does not kill K_i but $(T - iI)^2$ does.

(d) (4 marks) $\begin{pmatrix} i & 1 \\ -i & -i \end{pmatrix}$, which can be directly read from the minimal polynomial, or use dot diagram.

(e) (4 marks) $K_i = \text{span}\{v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, (T - iI)v = \begin{pmatrix} 0 \\ 2 \end{pmatrix}\}$. (2 marks) for calculation
REMARK One compute $K_{-i} = \text{span}\{\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}\}$, with each vector gives cycle of length 1.

7. Jordan basis $\{\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\}$, with Jordan form $\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$.

8. One compute $U = T^2 + T - I = \begin{pmatrix} 5 & 5 & 1 \\ 5 & 5 & 1 \\ 5 & 1 & 1 \end{pmatrix}$. Using Young diagram (or whatever method) one show the Jordan form of U should be $\begin{pmatrix} 5 & 1 \\ 5 & 1 \\ 5 & 1 \end{pmatrix}$.