(1) Let \(V = \mathbb{R}^4 \) and let \(e_1, e_2, e_3, e_4 \) be its standard basis. Let \(\mathcal{A}^3(\mathbb{R}^4) \) be the space of alternating 3-tensors on \(\mathbb{R}^4 \). Let \(T \) be a 2 tensor on \(V \) given by \(T(u, v) = 2u_1v_2 + 3u_1v_1 - 5u_3v_4 \). Let \(S \) be a 1-tensor on \(V \) given by \(S(u) = 2u_1 + u_2 - 3u_4 \). Express \(\text{Alt}(T \otimes S) \) in the standard basis of \(\mathcal{A}^3(\mathbb{R}^4) \).

(2) Let \(T \) be a \(k \)-tensor on \(R^n \). Prove that \(T \) is \(C^\infty \) as a map \(\mathbb{R}^{nk} \to \mathbb{R} \).

(3) Let \(M \) be a union of \(x \) and \(y \) axis in \(\mathbb{R}^2 \). Prove that \(M \) is not a \(C^1 \) manifold.

(4) Prove that \(S_+^2 = \{(x, y, z) \in \mathbb{R}^3| \text{ such that } x^2 + y^2 + z^2 = 1, z \geq 0 \} \) is a manifold with boundary.

(5) Let \(c: [0, 1] \to (\mathbb{R}^n)^n \) be continuous. Suppose that \(c^1(t), \ldots, c^n(t) \) is a basis of \(\mathbb{R}^n \) for any \(t \).

Prove that \((c^1(0), \ldots, c^n(0)) \) and \((c^1(1), \ldots, c^n(1)) \) have the same orientation.

(6) Let \(C \) be the triangle in \(\mathbb{R}^2 \) with vertices \((0, 0), (1, 2), (-1, 3)\)

Compute \(\int_C x + y \).

(7) Let \(e_1, e_2 \) be a basis of a vector space \(V \) of dimension 2. Let \(T \in \mathcal{L}^2(V) \) be given by \(e_1^* \otimes e_1^* + e_2^* \otimes e_2^* \).

Prove that \(T \) can not be written as \(S \otimes U \) with \(S, U \in \mathcal{L}^1(V) \).

(8) Let \(U \subset \mathbb{R}^n \) be open. Let \(f, g: U \to \mathbb{R} \) be continuous and \(|f| \leq g \). Suppose \(\int_U^\text{ext} g \) exists.

Prove that \(\int_U^\text{ext} f \) also exists.