(1) Using the method from class write a table of all prime numbers \(\leq 100 \). Explain why you only need to cross out the numbers divisible by 2, 3, 5 and 7.

(2) Let \(p_1, p_2 \) be distinct primes. Using the Fundamental Theorem of Arithmetic prove that a natural number \(n \) is divisible by \(p_1 p_2 \) if and only if \(n \) is divisible by \(p_1 \) and \(n \) is divisible by \(p_2 \).

(3) (a) Find all possible values of \(2^k \pmod{6} \).
 (b) Find all possible values of \(k^2 \pmod{6} \)

(4) Find the rule for checking when an integer is divisible by 13 similar to the rule for checking divisibility by 9 done in class.

(5) Prove that if \(m > 1 \) is not prime then there exist integers \(a, b, c \) such that \(c \not\equiv 0 \pmod{m} \), \(ac \equiv bc \pmod{m} \) but \(a \not\equiv b \pmod{m} \).