3. Exterior derivative (continued)

Proposition 3.1. Exterior differentiation on a manifold M satisfies the following properties

a) Let $f : M \to \mathbb{R}$ be smooth. Then df when viewed as exterior derivative of f as a 0-form coincides with df - differential of f.

b) $d : \Omega^k(M) \to \Omega^{k+1}(M)$ is linear.

c) $d \circ d = 0$

d) $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^{|\omega|\cdot|\eta|}\omega \wedge d\eta$

e) If $F : M^n \to N^m$ is smooth and ω is a form on N then $F^*(d\omega) = d(F^*(\omega))$

Moreover, an operation $d : \Omega^*(M) \to \Omega^{*+1}(M)$ satisfying a)-d) is unique and must coincide with the exterior derivative.

Proof. The proof of the properties a)-d) is an immediate consequence of the definition and the fact that these properties hold for exterior derivatives on open subsets of \mathbb{R}^n.

To prove uniqueness, suppose d is another operation satisfying a)-d).

Observe that locally any ω can be written as $\omega = \sum I \omega_I(x) dx^I$ where $dx^I = dx^{i_1} \wedge \ldots \wedge dx^{i_k}$ and $x : U \to V \subset \mathbb{R}^n$ is a local coordinate chart on an open subset $U \subset M$. Then we have that $dx^I = dx^i$ by a) and hence $d(dx^I) = d(dx^i) = 0$ by c). Therefore, by repeatedly applying d) we get that $d(dx^{i_1} \wedge \ldots \wedge dx^{i_k}) = 0$. Therefore, by d) again we get that $d(\omega_I(x)dx^I) = d(\omega_I(x)) \wedge dx^I + \omega_I(x) \wedge d(dx^I) = dw_I(x) \wedge dx^I + 0 = d(\omega_I(x)dx^I)$. The general case follows by linearity of d and d. \qed

4. De Rham cohomology

Definition 4.1. A form $\omega \in \Omega^*(M)$ is called closed if $d\omega = 0$.

A form $\omega \in \Omega^*(M)$ is called exact if $\omega = d\eta$ for some $\eta \in \Omega^{*-1}(M)$.

Since $d \circ d = 0$ it’s obvious that every exact form is closed. It’s natural to ask to what extent the converse holds. Let $B^k(M)$ be the set of all exact k-forms and let $Z^k(M)$ be the set of all closed k-forms. It’s obvious that $B^k(M)$, $Z^k(M)$ are vector spaces and by above $B^k(M) \subset Z^k(M)$.

Definition 4.2. Let M^n be a smooth manifold, possibly with boundary. The k-th de Rham cohomology group of M is defined to be the quotient group

$$H^k_{DR}(M) := Z^k(M)/B^k(M)$$

Since $B^k(M)$ is a vector subspace of $Z^k(M)$ the quotient $H^k_{DR}(M)$ is a vector space and not just a group.

By the definition that $H^k_{DR}(M) = 0$ iff every closed k-form is exact.
Example 4.4. Let $M = V$ be an open subset of \mathbb{R}^2. Then a 1-form ω on V has the form $P(x,y)dx + Q(x,y)dy$. By definition, ω is exact iff $\omega = df$ for some smooth $f : V \to \mathbb{R}$, i.e., if $P(x,y)dx + Q(x,y)dy = \frac{\partial f}{\partial x}(x,y)dx + \frac{\partial f}{\partial y}(x,y)dy$ or $P(x,y) = \frac{\partial f}{\partial x}(x,y)$ and $Q(x,y) = \frac{\partial f}{\partial y}(x,y)$.

On the other hand ω is closed iff $0 = d\omega = d(P(x,y)dx + Q(x,y)dy) = (-\frac{\partial P}{\partial y}(x,y) + \frac{\partial Q}{\partial x}(x,y))dx \wedge dy$ or $-\frac{\partial P}{\partial y}(x,y) + \frac{\partial Q}{\partial x}(x,y) = 0$.

Thus, every closed 1-form on V is exact iff for any smooth $P, Q : V \to \mathbb{R}$ satisfying $\frac{\partial P}{\partial y}(x,y) = \frac{\partial Q}{\partial x}(x,y)$ there exists a smooth $f : V \to \mathbb{R}$ such that $P = \frac{\partial f}{\partial x}$ and $Q = \frac{\partial f}{\partial y}$.

Exercise 4.4. Prove that $H^1_{DR}(\mathbb{R}^2) = 0$

Let $f : M \to N$ be a smooth map between manifolds. Since $F^* \circ d = d \circ F^*$ sends closed forms to closed forms and exact forms to exact forms. Therefore it induces a homomorphism $F^* : H^k_{DR}(N) \to H^k_{DR}(M)$ for any k.

Since $(G \circ F)^* = F^* \circ G^*$ and $Id_*^M = Id$ it follow that if $F : M \to N$ is a diffeomorphism then $F^* : H^k_{DR}(N) \to H^k_{DR}(M)$ is an isomorphism. We will see later that for $V = \mathbb{R}^2 \setminus \{0\}$ the form $\omega = \frac{y}{x^2+y^2}dx - \frac{x}{x^2+y^2}dy$ is closed but not exact. This will imply that $H^1_{DR}(\mathbb{R}^2 \setminus \{0\}) \neq 0$. Since $H^1(\mathbb{R}^2) = 0$ by the exercise above, this will show that \mathbb{R}^2 is not diffeomorphic to $\mathbb{R}^2 \setminus \{0\}$.

5. Orientation

5.1. Orientation on a vector space.

Definition 5.1. Let V be a finite dimensional vector space. Let $e = (e_1, \ldots, e_n)$ and $e' = (e'_1, \ldots, e'_n)$ be two bases of V. We say that $e \sim e'$ if the transition matrix A from e to e' has det $A > 0$. It’s easy to see that \sim satisfies the following properties

- if $e \sim e'$ then $e' \sim e$;
- if $e \sim e'$ and $e' \sim e''$ then $e \sim e''$.

This means that \sim is an equivalence relation on the set of all bases of V. We will call equivalence classes mod \sim orientations on V. We will say that two bases e, e' have the same orientation if they belong to the same equivalence class, i.e. the transition matrix from e to e' has positive determinant.

Lemma 5.2. Let V be a finite dimensional vector space. Then there are precisely two possible ordinations on V.

Proof. Let $e = (e_1, \ldots, e_n)$ be a basis of V and let $e' = (-e_1, e_2, \ldots, e_n)$. Since the transition matrix A from e to e' has determinant -1 they define two different orientations on V. We claim that any other basis of V is equivalent to either e or e': Let e'' be a basis of V. Let B be the transition matrix from e' to e''. Then the transition matrix from e to e'' is BA and $\det(BA) = \det(B) \cdot \det A = -\det B$. This means that $\det B$ and $\det(BA)$ have opposite signs, and thus one of them is positive and the other is negative. Therefore $e'' \sim e$ or $e'' \sim e'$.
We’ll call the two distinct orientations on \(V \) opposite or negative to each other. If \(\epsilon \) is an orientation and \(e = (e_1, \ldots, e_n) \) is a basis we put \(\epsilon(e) = +1 \) if \(e \) is positively oriented with respect to \(\epsilon \) and we put \(\epsilon(e) = -1 \) if \(e \) is negatively oriented with respect to \(\epsilon \).

\(\mathbb{R}^n \) has a canonical orientation defined by the canonical basis \((e_1, \ldots, e_n)\) of \(\mathbb{R}^n \).

Orientations on \(V \) correspond to orientations on \(\mathcal{A}^n(V) \cong \mathbb{R} \) as follows.

Let \(w \in \mathcal{A}^n(V) \) be a nonzero alternating \(n \)-tensor. It defines an orientation \(\epsilon_w \) as follows:

Given a basis \(e = (e_1, \ldots, e_n) \) we’ll say that \(e \) is positively oriented iff \(w(e_1, \ldots, e_n) > 0 \). It’s easy to see that this defines an orientation on \(V \). It’s also obvious that if \(w' = \lambda w \) with \(\lambda \neq 0 \) then \(w \) and \(w' \) define the same orientation iff \(\lambda > 0 \).

5.2. Orientation on manifolds. Let \(M^n \) be a smooth \(n \)-dimensional manifold (possibly with boundary).

Definition 5.3. An orientation \(\epsilon \) on \(M^n \) is a choice of orientation \(\epsilon(p) \) on \(T_pM \) for all \(p \in M \).

An orientation \(\epsilon \) is called continuous if for any \(p \in M \) there exists an open set \(U \subset M \) containing \(p \) and a collection of continuous vector fields \(X_1, \ldots, X_n \) on \(U \) such that \(X_1(q), \ldots, X_n(q) \) is a basis of \(T_qM \) for any \(q \in U \) and \(\epsilon(X_1(q), \ldots, X_n(q)) = +1 \) for any \(q \in U \).

A manifold \(M \) is called orientable if it admits a continuous orientation.

Exercise 5.4. Prove that an orientation \(\epsilon \) is continuous if and only if it’s smooth, i.e. for any \(p \in M \) there exists an open set \(U \subset M \) containing \(p \) and a collection of smooth vector fields \(X_1, \ldots, X_n \) on \(U \) such that \(X_1(q), \ldots, X_n(q) \) is a basis of \(T_qM \) for any \(q \in U \) and \(\epsilon(X_1(q), \ldots, X_n(q)) = +1 \) for any \(q \in U \).

From now on we will only consider continuous orientations. The relation between orientations and nonzero alternating \(n \)-vectors on a fixed vector space naturally carries over to manifolds as follows.

Suppose \(\omega \) is a smooth \(n \)-form on \(M^n \) such that \(\omega(p) \neq 0 \) for any \(p \in M \). Then \(\omega \) defines an orientation \(\epsilon_\omega \) on \(M \) as follows. Given \(p \in M \) and a basis \(v_1, \ldots, v_n \) of \(T_pM \) we say that it’s positively oriented iff \(\omega(p)(v_1, \ldots, v_n) > 0 \).

Lemma 5.5. \(\epsilon_\omega \) is continuous.

Proof. Let \(p \in M \) be any point. Let \(U \) be a coordinate ball containing \(p \), so \(U \) is diffeomorphic to an open ball \(B(0,1) \) in \(\mathbb{R}^n \) under some local coordinate map \(x: U \rightarrow \mathbb{R}^n \). Let \(X_i(q) = \frac{\partial}{\partial x_i}(q) \). Then \(f(q) = \omega(X_1(q), \ldots, X_n(q)) \) is smooth on \(U \). Since \(f(q) \neq 0 \) for any \(q \), by the Intermediate Value Theorem we must have that \(f(q) > 0 \) for all \(q \in U \) or \(f(q) < 0 \) for all \(q \in U \). In the first case this gives the required collection of continuous vector fields on \(U \). In the second case the same works after changing \(X_1 \) to \(-X_1\). \(\square \)
Next we will show that the converse also holds, i.e. every continuous orientation is equal to ϵ_ω for some nowhere zero $\omega \in \Omega^n(M^n)$.

Lemma 5.6. Let ϵ be a continuous orientation on a smooth manifold M^n. Then there exists a smooth form $\omega \in \Omega^n(M)$ such that $\omega(p) \neq 0$ for any $p \in M$ and $\epsilon = \epsilon_\omega$.

Proof. Let ϵ be a continuous orientation on M.

We will use the following terminology. Let ω be a smooth n-form on an open subset $U \subset M$. We will say that ω is positive on U if $\omega(p)(v_1, \ldots, v_n) > 0$ for any $p \in U$ and any positive basis v_1, \ldots, v_n of $T_p M$. We need to prove that there exists a positive form on $U = M$.

Observe that if $\omega_1, \ldots, \omega_m$ are positive forms on U and $\phi_1, \ldots, \phi_m : U \to \mathbb{R}$ are smooth functions such that $\phi_i \geq 0$ on U and $\sum_i \phi_i > 0$ on U then $\sum_i \phi_i \omega_i$ is positive on U.

For any $p \in M$ let U_p be an open set containing p such that there exist n smooth vector fields X_1, \ldots, X_n on U_p such that $X_1(q), \ldots, X_n(q)$ is a positive basis of $T_q M$ for any $q \in U_p$. Let $X_1(q), \ldots, X_n(q)$ be the dual basis of $T_q^* M$. Then X_1, \ldots, X_n are smooth forms on U (why?). Let $\omega_p = X_1 \wedge \ldots \wedge X_n$. Then it’s a smooth positive form on U. Take a partition of unity $\{\phi_i\}$ subordinate to the cover $\{U_p\}_{p \in M}$ of M. Then supp $\phi_i \subset U_{p_i}$ for some p_i and by the observation above $\omega = \sum_i \phi_i \omega_i$ is positive on all of M. \qed