Moser Iteration and ε-regularity

Robert Haslhofer

The goal of these notes is to explain step by step how to prove the following ε-regularity theorem via Moser iteration:

Theorem

There are constants $\varepsilon > 0$ and $C < \infty$ with the following significance. If $n = 4$ and $u \in H^1(B_1)$ is a nonnegative function that satisfies

$$-\Delta u \leq u^2$$

weakly, then

$$\|u\|_{L^2(B_1)} \leq \varepsilon \Rightarrow \|u\|_{L^\infty(B_1/2)} \leq C\|u\|_{L^2(B_1)}.$$ \(2\)

First step of the Moser iteration. Choose a cutoff-function $0 \leq \eta \leq 1$ that is 1 on $B_{3/4}$, has support in B_1, and satisfies $|\nabla \eta| \leq 8$. Multiplying (1) by $\eta^2 u$ and integrating by parts we obtain

$$\int_{B_1} \eta^2 |\nabla u|^2 \leq 2 \int_{B_1} \eta |\nabla u| |\nabla \eta| u + \int_{B_1} \eta^2 u^3.$$ \(3\)

Dealing with the first term on the right hand side by Young’s inequality and absorption, this gives the estimate

$$\frac{1}{2} \int_{B_1} \eta^2 |\nabla u|^2 dV \leq 128 \int_{B_1} u^2 + \int_{B_1} \eta^2 u^3.$$ \(4\)

For the last term, using Hölder’s inequality, the assumption that the energy on B_1 is less than ε, and the Sobolev-inequality, we get

$$\int_{B_1} \eta^2 u^3 \leq \left(\int_{B_1} u^2 \right)^{1/2} \left(\int_{B_1} (\eta u)^4 \right)^{1/2} \leq \varepsilon C_S^2 \int_{B_1} |\nabla (\eta u)|^2$$

$$\leq 2\varepsilon C_S^2 \int_{B_1} \eta^2 |\nabla u|^2 + 128\varepsilon C_S^2 \int_{B_1} u^2,$$

where $C_S < \infty$ is the local Sobolev constant on B_1. The main idea is that if we choose ε so small that $2\varepsilon C_S^2 \leq \frac{1}{4}$ then the $\int \eta^2 |\nabla u|^2$ term can be absorbed, giving

$$\frac{1}{4} \int_{B_1} \eta^2 |\nabla u|^2 \leq 144 \int_{B_1} u^2$$ \(6\)
and using the Sobolev inequality we arrive at the L^4-estimate
\[\|u\|_{L^4(B_{3/4})} \leq 24C_S\|u\|_{L^2(B_1)}. \]
(7)

General step of the Moser iteration. Fix $\varepsilon \leq \frac{1}{5}C_S^{-2}$, where C_S is the local Sobolev constant on B_1. Consider the sequence of radii $r_k = \frac{1}{2} + \frac{1}{2^k}$ interpolating between $r_1 = 1$ and $r_\infty = \frac{1}{2}$. We want to prove by induction an estimate of the form
\[\|u\|_{L^{2k+1}(B_{r_{k+1}})} \leq C_k\|u\|_{L^{2k}(B_{r_k})}. \]
(8)

The case $k = 1$ has already been established above (with $C_1 = 24C_S$). For general $k \geq 2$ we multiply (1) by $\eta_k^2 u^{2\alpha_k-1}$, where $\alpha_k = 2^{k-1}$, and $0 \leq \eta_k \leq 1$ is a cutoff function that equals 1 on B_{r_k}, has support in B_{r_k}, and satisfies $|\nabla\eta_k| \leq 2/(r_k - r_{k+1})$. After integration by parts, we obtain
\[\frac{2\alpha_k - 1}{\alpha_k^2} \int_{B_{r_k}} \eta_k^2 |\nabla u^{\alpha_k}|^2 \leq \int_{B_{r_k}} \eta_k |\nabla u| \|\nabla\eta_k\| u^{2\alpha_k-1} + \int_{B_{r_k}} \eta_k^2 u^{2\alpha_k+1}. \]
(9)

Dealing with the first term on the right hand side by Young’s inequality and absorption, this gives the estimate
\[\frac{2\alpha_k - 1}{2\alpha_k^2} \int_{B_{r_k}} \eta_k^2 |\nabla u^{\alpha_k}|^2 \leq \frac{32\alpha_k^2}{2\alpha_k - 1} \int_{B_{r_k}} u^{2\alpha_k} + \int_{B_{r_k}} \eta_k^2 u^{2\alpha_k+1}. \]
(10)

For the last term, using Hölder’s inequality, the Peter-Paul inequality, the Sobolev-inequality, and the estimate (7), we compute
\[\int_{B_{r_k}} \eta_k^2 u^{2\alpha_k+1} \leq \left(\int_{B_{r_k}} \eta_k^4 u^{4\alpha_k} \right)^{1/4} \left(\int_{B_{r_k}} \eta_k^4 u^4 \right)^{1/4} \left(\int_{B_{r_k}} u^{2\alpha_k} \right)^{1/2} \]
(11)
\[\leq \delta_k C_S \int_{B_{r_k}} |\nabla(\eta_k u^{\alpha_k})|^2 + \frac{1}{4\delta_k} \left(\int_{B_{r_k}} \eta_k^4 u^4 \right)^{1/2} \int_{B_{r_k}} u^{2\alpha_k} \]
\[\leq 2\delta_k C_S^2 \int_{B_{r_k}} \eta_k^2 |\nabla u^{\alpha_k}|^2 + \left(128\delta_k C_S^2 \alpha_k^2 + \frac{1}{4\delta_k} 24\alpha_k^2 \varepsilon^2 \right) \int_{B_{r_k}} u^{2\alpha_k}. \]

Choosing $\delta_k = (2\alpha_k - 1)/(8\alpha_k^2 C_S^2)$ the first term can be absorbed, giving
\[\frac{2\alpha_k - 1}{4\alpha_k^2} \int_{B_{r_k}} \eta_k^2 |\nabla u^{\alpha_k}|^2 \leq \left(\frac{32\alpha_k^2}{2\alpha_k - 1} + 16(2\alpha_k - 1) + \frac{18\alpha_k^2}{2\alpha_k - 1} \right) \int_{B_{r_k}} u^{2\alpha_k}, \]
(12)
and using the Sobolev inequality we arrive at the estimate (8), with
\[C_k \leq (D2^{2k})^{1/2^k}, \]
(13)
where $D < \infty$ is a universal constant (in fact $D = 100$ works). The product of the constants C_k is bounded and sending $k \to \infty$ gives the desired estimate
\[\|u\|_{L^\infty(B_{1/2})} \leq C\|u\|_{L^2(B_1)}. \]
(14)