Functions and Inverses – Problems

1. (a) If $f(x)$ is an invertible function and $f(2) = -5$, what is $f^{-1}(-5)$?
(b) If $f(x)$ is an invertible function and $f(0) = 2$, what is $f \left(f^{-1}(0) \right)$?
(c) Let $f(x) = x^3$. At how many points do the graphs of $y = f(x)$ and $y = f^{-1}(x)$ intersect?

2. Find the domain of the following functions:
 (a) $f(x) = \sqrt{2x + 7} - \frac{x}{3x - x^2}$
 (b) $f(x) = \frac{3}{3x - x^2} + \frac{\sqrt{9 - x^2}}{3}$

3. (a) Let $f(x) = \frac{7x + 1}{9 - 2x}$. Find $f^{-1}(x)$.
(b) Does the relation described by $xy = 7y + 8$ define a function in the variable y? What about a function in the variable x?
(c) Under which circumstances does the function $f(n) = n!$ (n factorial) have an inverse function? Where doesn’t the inverse exist? Explain.
(d) Let $h(x) = x^2 - 2x + 8$ and $g(x) = \sqrt{x}$. Write an expression for $(g \circ h \circ g)(x)$ in terms of x.
(e) Let $f(x) = x + 1$ and $g(x) = \frac{1}{x}$. Compute $(f \circ g)^{-1}(2)$.

4. (a) Which of the following relations are functions of q:

 $w = q + 1$, $q = \frac{2q + 1}{w}$, $wq = -27$.

 (b) Find the inverse function f^{-1} for each of the following.

 $f(x) = 3x + 2$, $x^2 + 6x + 3$ for $x \leq -3$, $f(x) = \frac{x + 3}{5x - 1}$.

 (c) Let $f(x) = \frac{2x}{1-x}$. Find all real numbers x, if any, for which $f(-x) = 2f(x)$.

 (d) Let $f(x) = \sqrt{x} + 1$, $g(x) = x^2 - x$, and $h(x) = \frac{1}{x - 2}$. Evaluate and simplify the following

 $f \left(g(x) \right)$, $(h \circ g)(x)$, $f \left(g(h(x)) \right)$, $(g \circ h \circ g)(x)$.
5. Give a different function for each of the following questions so that the function has exactly the given domain and range.

(a) Domain = \(\mathbb{R}\), Range = \(\mathbb{R}\).
(b) Domain = \((-\infty,0) \cup (0,\infty)\), Range = \((-\infty,0) \cup (0,\infty)\).
(c) Domain = \(\mathbb{R}\), Range = \{4\}.
(d) Domain = \((0,1) \cup (1,2) \cup (2,\infty)\), Range = \((3,\infty)\).

Exponentials and Logarithms

1. (a) If \(f(x) = 2^x\), then what is \(f^{-1}(1024)\)?

 (b) Find the inverse function \(f^{-1}(x)\) of \(f(x) = e^{4x-2}\).

2. \(\frac{e^{7x-1}}{e^{x-1}} = (e^6)^7\). Find \(x\).

3. For how many values does \(e^x = 0\)? What does that tell us about the value of \(\ln(0)\)?

4. Evaluate the following

 \[\log_3 \left(\frac{1}{27} \right) , \quad \log_4 \left(\frac{1}{4} \right) , \quad \log_{25} (\sqrt{5}) , \quad \ln(1). \]

5. Are there any solutions to the equation

 \[\ln(x^3 - 2x^2 - x + 2) - \ln(x + 1) - \ln(x - 2) = -\ln(2) ? \]

 Why or why not?

6. Evaluate the following.

 (a) \(\frac{e^{1+2\ln 7)^2}}{(7^{1+\ln 7})^2(73)^{1+\ln 7}}\)

 (b) \(\frac{\log_5 25 - \log_5 \frac{1}{10}}{3^{\log_3 2} - e^{\ln 8}}\)

 (c) \(\frac{\log_6 4 - 2 \log 25(5) + \log_6 9}{\log_5 (3^{1-3} - 3^{-2} - 27^{-1})}\)

7. Solve the following equation: \(e^{\ln x + \ln(x+4)} = 5\).

8. Do the graphs of \(y = e^x\) and \(y = \ln x\) intersect? If so, where? If not, how do you know?
9. Which of the following are equal to \(\frac{1}{2} \):

\[e^{\ln(0.5)}, \quad e^{-\ln(2)}, \quad \ln(1) - \ln(2), \quad \frac{3e^0}{6} \]

Write the equation of the horizontal asymptote to the graph \(y = e^x \) and the equation of the vertical asymptote to the graph of \(y = \ln x \). Use the definition of “inverse functions” to explain how the equations of the two asymptotes are related.

10. Solve the following equation:

\[2^x = 5^{9x-2}. \]

11. If the population of rabbits on a particular island is given by the equation \(P = 10 \cdot 2^t \), where \(t \) is the time (in year), find the initial population of rabbits on the island.

Then find how many years it will take for the population to reach 1000.