points problems

1. Pete has marked several (three or more) points in the plane such that all distances between them are different. A pair of marked points \(A; B \) will be called unusual if \(A \) is the furthest marked point from \(B \), and \(B \) is the nearest marked point to \(A \) (apart from \(A \) itself). What is the largest possible number of unusual pairs that Pete can obtain?

2. Given that \(0 < a, b, c, d < 1 \) and \(abcd = (1 - a)(1 - b)(1 - c)(1 - d) \), prove that

\[
(a + b + c + d) - (a + c)(b + d) \geq 1.
\]

3. In triangle \(ABC \), points \(A_1, B_1, C_1 \) are bases of altitudes from vertices \(A, B, C \), and points \(C_A, C_B \) are the projections of \(C_1 \) to \(AC \) and \(BC \) respectively. Prove that line \(C_AC_B \) bisects the segments \(C_1A_1 \) and \(C_1B_1 \).

4. Does there exist a convex \(N \)-gon such that all its sides are equal and all vertices belong to the parabola \(y = x^2 \) for

3 a) \(N = 2011 \);
4 b) \(N = 2012 \)?

5. We will call a positive integer \(\text{good} \) if all its digits are nonzero. A good integer will be called \(\text{special} \) if it has at least \(k \) digits and their values strictly increase from left to right. Let a good integer be given. At each move, one may either add some special integer to its digital expression from the left or from the right, or insert a special integer between any two its digits, or remove a special number from its digital expression. What is the largest \(k \) such that any good integer can be turned into any other good integer by such moves?

6. Prove that the integer \(1^1 + 3^3 + 5^5 + \ldots + (2^n - 1)^{2^{n-1}} \) is a multiple of \(2^n \) but not a multiple of \(2^{n+1} \).

7. 100 red points divide a blue circle into 100 arcs such that their lengths are all positive integers from 1 to 100 in an arbitrary order. Prove that there exist two perpendicular chords with red endpoints.