1 Let \(j \) and \(m \) be numbers selected by \(J \) and \(M \) respectively. Note that \(j \mid 2002 \); otherwise \(J \) would know that \(m = 2002 - j \). Also \(j \neq 2002 \); otherwise \(m = 1 \) (since \(m \neq 0 \)). So, \(j \leq 1001 \). Further, the same is true for \(m \). In addition, \(M \) knows that \(j \leq 1001 \). Therefore, \(m = 1001 \) (otherwise \(M \) would know \(j = 2002 : m \)).

So, \(m = 1001 \) is the only possible solution. One can check that it works.

2 Let \(N \) be the number of students in the class, \(M \) the number of the problems, \(P \) the number of passed students, \(H \) the number of hard problems. According to definition “a problem is hard” if it has not been solved by at least \(rN \) students; where \(r = \frac{2}{3}, \frac{3}{4}, \frac{7}{10} \) in (a), (b), (c).

Also, according to definition “a student passes” if he solves at least \(rM \) problems.

- **a)** It is possible. Consider a class consisting of students \(S_1, S_2, S_3 \) and set of problems \(P_1, P_2, P_3 \). Let \(S_1 \) solve \(P_1 \) and \(P_3 \), \(S_2 \) solve \(P_2 \) and \(P_3 \) and \(S_3 \) solved neither \(P_1 \) nor \(P_2 \). Then \(S_1, S_2 \) pass and \(P_1, P_2 \) are hard problems.

- **b)** It is impossible. Let us write down the results of the test (“+” or “−”) into \(N \times M \) table.

Let passed students be on the top and hard problems on the left of the table. Let us estimate \(K_+ \) and \(K_- \), the numbers of “+” and “−” in the table. First,

\[
K_+ \geq \text{(number of “+” got by students who passed)} \geq P \times rM \geq r^2MN
\]

and

\[
K_- \geq \text{(number of “−” got for hard problems)} \geq H \times rN \geq r^2MN.
\]

Then \(MN = K_+ + K_- \geq 2r^2 MN \) which is impossible for \(r = \frac{3}{4} \).

- **c)** It is impossible. Arguments of (b) do not work here since \(2r^2 \leq 1 \). Now we denote by \(K_+ \) and \(K_- \) the numbers of “+” and “−” in the top-left \(P \times H \) sub-table. Then

\[
K_+ \geq \text{(minimal number of “+” for hard problems got by students who passed)} \geq P \times \frac{4}{7}H
\]

(a student cannot pass if he solves less than \(\frac{4}{7}H \) of hard problems even if he solves all the easy problems, the number of which does not exceed \(\frac{3}{7}M \)). On the other hand,

\[
K_- \geq \text{(minimal number of “−” got by students who passed for hard problems)} \geq H \times \frac{4}{7}P.
\]

So, \(PH = K_+ + K_- \geq \frac{8}{7} PH \) which is impossible.
Let us assume that such point B exists (separated from A by each line). Then segment AB intersects all the lines and therefore ray $[BA]$ originated at B has no points of intersection beyond A. Therefore, A belongs to unbounded region.

Now, assume that A belongs to unbounded region. Our region is convex, bounded by two rays and maybe several segments. Note, that these rays are divergent. Therefore, one can draw a ray, originated at A and lying inside of our region. Without any loss of the generality we can assume that this ray is not-parallel to any of the lines; otherwise we can rotate it slightly. Then the opposite ray (originated at A) intersects all the lines and any point B beyond the last point of intersection satisfies the condition.

Since function $\cos x$ is a monotone decreasing on $(0, \pi/2)$ we have $(x - y)(\cos x - \cos y) \leq 0$ (equality holds only for $x = y$). Also $(x - z)(\cos z - \cos x) \leq 0$ and $(y - z)(\cos y - \cos z) \leq 0$. Adding these inequalities we get

$$2(x \cos x + y \cos y + z \cos z) \leq (y + z) \cos x + (x + z) \cos y + (y + x) \cos z$$

and therefore

$$3(x \cos x + y \cos y + z \cos z) \leq (x + y + z)(\cos z + \cos y + \cos x)$$

which implies our inequality.

Let $\{a_k\}$ be our sequence. Note that $1 \leq a_{k+1} - a_k \leq 9$. Then the segment $[9 \ldots 989, 9 \ldots 999]$ contains a term of our sequence; $a_k = 9 \ldots 99r$. If r is even than a_k is even. If r is odd then a_{k+1} must be odd.