MAT 240F - Problem Set 7

Due Thursday, November 20th

Questions 1, 3 b), 4 c) and 5 will be marked.

1. Let V_1, V_2, W_1 and W_2 be vector spaces over a field F. Let $T \in \mathcal{L}(V_1, V_2)$, $U_1 \in \mathcal{L}(W_1, V_1)$ and $U_2 \in \mathcal{L}(V_2, W_2)$. Suppose that $\text{nullity}(T)$ is finite and U_1 and U_2 are isomorphisms. (For full marks, do not assume that the vector spaces V_j and W_j are finite-dimensional.) Prove that $\text{nullity}(U_2TU_1) = \text{nullity}(T)$.

2. Let F be a field and let n be an integer such that $n \geq 2$. Suppose that $A, B \in M_{n \times n}(F)$. We say that A is similar to B if there exists an invertible matrix $C \in M_{n \times n}(F)$ such that $A = C^{-1}BC$.

 a) Show that if A is similar to B, then $\text{rank}(A) = \text{rank}(B)$.

 b) Show that if A is similar to B, then A is invertible if and only if B is invertible.

 c) Suppose that A and B are invertible. Show that A is similar to B if and only if A^{-1} is similar to B^{-1}.

 d) Show that if A is similar to B, then A^m is similar to B^m for all positive integers m.

3. For each $T \in \mathcal{L}(V, W)$ as defined below, find $T^{-1}(y)$ for each vector $y \in W$.

 a) Let $V = W = P_2(\mathbb{C})$ and let $(Tf)(x) = f(ix) - f(x-1) + f(0)$, $f \in P_2(\mathbb{C})$.

 b) Let $V = P_3(\mathbb{R})$ and $W = M_{2 \times 2}(\mathbb{R})$, and let

 $$T(ax^3 + bx^2 + cx + d) = \begin{pmatrix} a + c & \cdots & b \\ c & \cdots & a \\ \vdots & \ddots & \vdots \\ b & \cdots & c \end{pmatrix}, \quad a, b, c, d \in \mathbb{R}.$$

 c) Let $V = W = F_5^3$ and

 $$T(a, b, c) = ((2a + b + 3c) \mod 5, (a + b) \mod 5, (a + b + c) \mod 5), \quad a, b, c \in F_5.$$

4. Compute $\text{rank}(T)$ for each linear transformation T. Explain your answer fully.

 a) Let $T : M_{2 \times 2}(\mathbb{C}) \rightarrow \mathbb{C}^4$ be defined by $T\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = (a + i c + d, 2i a - b + i d, a - 3 c, b - (1 + 3i)c + (1 - i)d)$, a, b, c and $d \in \mathbb{C}$.

 b) Let $T : P_2(\mathbb{R}) \rightarrow P_2(\mathbb{R})$ be defined by $T(a + bx + cx^2) = a + 2b + c + (a + 3b + 4c)x + (2a + 3b - c)x^2$, $a, b, c \in \mathbb{R}$.

 c) Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^5$ be defined by $T(a, b, c, d) = (4a - b + c, b + 3d, 3a + c + d, c - d, b + c + 2d)$, $a, b, c, d \in \mathbb{R}$.

5. Suppose that $A, B \in M_{n \times n}(F)$ are invertible. Prove that it is possible to transform A into B using elementary row operations. (Note: Elementary column operations should not be used.)

6. Suppose that $A, B \in M_{m \times n}(F)$, and $\text{rank}(A) = \text{rank}(B)$. Prove that there exist invertible matrices $P \in M_{m \times m}(F)$ and $Q \in M_{n \times n}(F)$ such that $B = PAQ$.

7. #14, §3.2.

8. #21, §3.2.