Mat 1197 - Representations of the mirabolic subgroup
February 9

Let
\[
H = \left\{ \begin{pmatrix} a & x \\ 0 & 1 \end{pmatrix} \mid a \in F^\times, x \in F \right\},
\]
\[
N = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in F \right\},
\]
\[
S = \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \mid a \in F^\times \right\}.
\]

The group \(H \) is called the mirabolic subgroup of \(GL_2(F) \). Let \((\pi, V) \) be a smooth representation of \(N \) and let \(\vartheta \) be a quasicharacter of \(N \) (that is, a one-dimensional smooth representation of \(N \)). Let
\[
V(\vartheta) = \text{Span}(\{ \pi(n)v - \vartheta(n)v \mid n \in N, v \in V \}) \quad \text{and} \quad V_\vartheta = V/V(\vartheta).
\]

When \(\vartheta \) is trivial, we write \(V(N) \) instead of \(V(\vartheta) \) and \(V_N \) instead of \(V_\vartheta \).

1. Let \((\pi, V) \) be a smooth representation of \(N \) and let \(v \in V \). Show that \(v \in V(\vartheta) \) if and only if there exists a compact open subgroup \(U \) of \(N \) such that \(\int_U \vartheta(n)^{-1}\pi(n)v \, dn = 0 \). (Here, \(dn \) is a Haar measure on \(N \).)

2. If \((\pi_j, V_j) \) are smooth representations of \(N \), \(1 \leq j \leq 3 \) and \(V_1 \to V_2 \to V_3 \) an exact sequence of \(N \)-morphisms, show that there is a corresponding exact sequence at the level of the spaces \((V_j)_\vartheta \).

3. Suppose that \(\vartheta \) is nontrivial. Show that the inclusion \(V(N) \to V \) induces an isomorphism \(V(N)_\vartheta \simeq V_\vartheta \).

4. Let \((\pi, V) \) be a smooth representation of \(N \). Prove that if \(v \in V \) and \(v \neq 0 \), then there exists a quasicharacter \(\vartheta \) of \(N \) such that \(v \notin V(\vartheta) \).

5. Let \((\pi, V) \) be a smooth representation of \(H \). Suppose that \(V_N = \{0\} \) and \(V_\vartheta = \{0\} \) for some nontrivial quasicharacter \(\vartheta \). Prove that \(V = \{0\} \). (Hint: Consider the action of \(S \) on the spaces \(V(\vartheta) \) for \(\vartheta \) nontrivial.)

6. Let \(\vartheta \) be a nontrivial quasicharacter of \(N \). Let \(\pi = \text{Ind}^H_N \vartheta \) and let \(V \) be the space of \(\pi \). Let \(\pi^\varphi = \text{c-Ind}^H_N \vartheta \) and let \(V^\varphi \) be the space of \(\pi^\varphi \). Show that
 a) \(V(N) = V^\varphi(N) = V^\varphi \) and \(V/V^\varphi(N) = \{0\} \).
 b) The map \(f \mapsto f(1) \) induces isomorphisms \(V_\vartheta \simeq \mathbb{C} \) and \(V^\varphi_\vartheta \simeq \mathbb{C} \).

7. Let \(\vartheta \) be a nontrivial quasicharacter of \(N \).
 a) Prove that \(\text{c-Ind}^H_N \vartheta \) is an irreducible representation of \(H \).
 b) Prove that the contragredient (smooth dual) of \(\text{c-Ind}^H_N \vartheta \) is reducible.
 c) Prove that \(\text{c-Ind}^H_N \vartheta \) is not admissible.

8. Let \((\pi, V) \) be a smooth representation of \(H \) and let \(\vartheta \) be a nontrivial quasicharacter of \(N \). Let \(q_\vartheta : V \to V_\vartheta \) be the quotient map. Frobenius reciprocity gives an isomorphism \(A : \text{Hom}_H(V, \text{Ind}^H_N V_\vartheta) \simeq \text{Hom}_N(V, V_\vartheta) \). Let \(q_\varphi = A^{-1}(q_\vartheta) \). (That is, for \(v \in V \), \(q_\varphi(v) \) is the function \(h \mapsto q(\pi(h)v) \).) Prove that the \(H \)-morphism \(q_\varphi : V \to \text{Ind}^H_N V_\vartheta \) induces an isomorphism \(V(N) \simeq \text{c-Ind}^H_N V_\vartheta \).

9. Let \((\pi, V) \) be an irreducible smooth representation of \(H \). Prove that exactly one of the following holds:
 (i) \(\dim V = 1 \) and there exists a quasicharacter \(\chi \) of \(H \) such that \(\pi(hn) = \chi(h) \) for all \(n \in N \) and \(h \in H \).
 (ii) \(V \) is infinite-dimensional and \(\pi \simeq \text{c-Ind}^H_N \vartheta \) for any nontrivial quasicharacter \(\vartheta \) of \(N \).

Describe the spaces \(V_N \) and \(V_\vartheta \) (for \(\vartheta \) nontrivial) in both cases.