INSTRUCTIONS

Non-programmable calculator permitted; no other aids allowed.

Present your solutions to all of the following questions in the exam booklets supplied. The marks for each question are indicated in parantheses.

TOTAL MARKS: 100.

1. (15 marks: 5 marks each) Find the following:
 (a) \(\int xe^x \, dx \)
 (b) the length of the curve with parametric equations
 \[x = \cos t; \quad y = \sin t; \quad z = t^{3/2} \]
 for \(0 \leq t \leq 1. \)
 (c) a unit tangent vector to the curve \(\mathbf{r} = \sin^{-1}t \mathbf{i} + \ln(t + 1) \mathbf{j} \) at the point for which \(t = 0. \)

2. (15 marks) Find the general solution to each of the following differential equations:
 (a) (5 marks) \(\frac{dy}{dx} = 3y + 5 \)
 (b) (10 marks) \(\frac{dy}{dx} + \frac{xy}{x^2 + 1} = \frac{1}{x} \)
3. (15 marks: 5 marks each) The following three parts are not related.

(a) Find the 5th degree Taylor polynomial of \(f(x) = \frac{x}{1-x} \) at \(x = 0 \)

(b) Find the interval of convergence of the power series \(f(x) = \sum_{n=0}^{\infty} \frac{n}{n^2 + 1}x^n \)

(c) Approximate the value of \(\int_{0}^{1/3} \sin x \frac{1}{x} \, dx \) correct to within 0.0001, and explain why your approximation is correct to within 0.0001

4. (15 marks) Consider the cardioid with polar equation \(r = 1 - \sin \theta \).

(a) (5 marks) Plot the cardioid, and label all \(x \) and \(y \) intercepts.

(b) (5 marks) Find the length of the cardioid.

(c) (5 marks) Find the area of the region within the cardioid.

5. (10 marks) Find the critical points of \(f(x, y) = 4x^3 - 6xy^2 + 3y^4 \) and at each critical point determine whether \(f \) has a relative maximum point, a relative minimum point, or a saddle point.

6. (10 marks) Do the following infinite series converge or diverge? Justify your answer.

(a) (3 marks) \(\sum_{n=1}^{\infty} \frac{n^2 + n - 1}{n^{5/2} - n^{3/2} + 4} \)

(b) (3 marks) \(\sum_{n=1}^{\infty} \frac{\sin(1/n)}{n} \)

(c) (4 marks) \(\sum_{n=1}^{\infty} \frac{2^n \ln n}{5^n \sqrt{n}} \)

7. (10 marks) Let \(f(x) = \frac{x^2}{(1+x^2)^2} \).

(a) (6 marks) Use the binomial series expansion for \((1 + x^2)^{-2} \) to find the Maclaurin series for \(f(x) \) and its radius of convergence.

(b) (4 marks) What is the exact value of \(\sum_{n=1}^{\infty} \frac{n(-1)^n}{3^{2n}} \)?

8. (10 marks) Find \(\int_{1}^{\infty} \frac{x + 1}{x^2 + x^4} \, dx \).