THE STONE-WEIERSTRASS THEOREM

7.26 Theorem If f is a continuous complex function on $[a, b]$, there exists a sequence of polynomials P_n such that

$$\lim_{n \to \infty} P_n(x) = f(x)$$

uniformly on $[a, b]$. If f is real, the P_n may be taken real.

This is the form in which the theorem was originally discovered by Weierstrass.

Proof We may assume, without loss of generality, that $[a, b] = [0, 1]$. We may also assume that $f(0) = f(1) = 0$. For if the theorem is proved for this case, consider

$$g(x) = f(x) - f(0) - x[f(1) - f(0)] \quad (0 \leq x \leq 1).$$

Here $g(0) = g(1) = 0$, and if g can be obtained as the limit of a uniformly convergent sequence of polynomials, it is clear that the same is true for f, since $f - g$ is a polynomial.

Furthermore, we define $f(x)$ to be zero for x outside $[0, 1]$. Then f is uniformly continuous on the whole line.

We put

$$Q_n(x) = c_n(1 - x^2)^n \quad (n = 1, 2, 3, \ldots),$$

where c_n is chosen so that

$$\int_{-1}^{1} Q_n(x) \, dx = 1 \quad (n = 1, 2, 3, \ldots).$$

We need some information about the order of magnitude of c_n. Since

$$\int_{-1}^{1} (1 - x^2)^n \, dx = 2 \int_{0}^{1} (1 - x^2)^n \, dx \geq 2 \int_{0}^{1/\sqrt{n}} (1 - x^2)^n \, dx$$

$$\geq 2 \int_{0}^{1/\sqrt{n}} (1 - nx^2) \, dx$$

$$= \frac{4}{3\sqrt{n}}$$

$$> \frac{1}{\sqrt{n}},$$

it follows from (48) that

$$c_n < \sqrt{n}. \quad (49)$$
The inequality \((1 - x^2)^n \geq 1 - nx^2\) which we used above is easily shown to be true by considering the function
\[
(1 - x^2)^n - 1 + nx^2
\]
which is zero at \(x = 0\) and whose derivative is positive in \((0, 1)\).

For any \(\delta > 0\), (49) implies
\[
Q_n(x) \leq \sqrt{n} (1 - \delta^2)^n \quad (\delta \leq |x| \leq 1),
\]
so that \(Q_n \to 0\) uniformly in \(\delta \leq |x| \leq 1\).

Now set
\[
P_n(x) = \int_{-1}^{1} f(x + t)Q_n(t) \, dt \quad (0 \leq x \leq 1).
\]

Our assumptions about \(f\) show, by a simple change of variable, that
\[
P_n(x) = \int_{-x}^{1-x} f(x + t)Q_n(t) \, dt = \int_{0}^{1} f(t)Q_n(t - x) \, dt,
\]
and the last integral is clearly a polynomial in \(x\). Thus \(\{P_n\}\) is a sequence of polynomials, which are real if \(f\) is real.

Given \(\varepsilon > 0\), we choose \(\delta > 0\) such that \(|y - x| < \delta\) implies
\[
|f(y) - f(x)| < \frac{\varepsilon}{2}.
\]

Let \(M = \sup |f(x)|\). Using (48), (50), and the fact that \(Q_n(x) \geq 0\), we see that for \(0 \leq x \leq 1\),
\[
|P_n(x) - f(x)| = \left| \int_{-1}^{1} [f(x + t) - f(x)]Q_n(t) \, dt \right|
\leq \int_{-1}^{1} |f(x + t) - f(x)|Q_n(t) \, dt
\leq 2M \int_{-\delta}^{\delta} Q_n(t) \, dt + \frac{\varepsilon}{2} \int_{\delta}^{\delta} Q_n(t) \, dt + 2M \int_{\delta}^{1} Q_n(t) \, dt
\leq 4M \sqrt{n} (1 - \delta^2)^n + \frac{\varepsilon}{2}
\leq \varepsilon
\]
for all large enough \(n\), which proves the theorem.

It is instructive to sketch the graphs of \(Q_n\) for a few values of \(n\); also, note that we needed uniform continuity of \(f\) to deduce uniform convergence of \(\{P_n\}\).
In the proof of Theorem 7.32 we shall not need the full strength of Theorem 7.26, but only the following special case, which we state as a corollary.

7.27 Corollary For every interval \([-a, a]\) there is a sequence of real polynomials \(P_n\) such that \(P_n(0) = 0\) and such that

\[
\lim_{n \to \infty} P_n(x) = |x|
\]

uniformly on \([-a, a]\).

Proof By Theorem 7.26, there exists a sequence \(\{P_n^*\}\) of real polynomials which converges to \(|x|\) uniformly on \([-a, a]\). In particular, \(P_n^*(0) \to 0\) as \(n \to \infty\). The polynomials

\[
P_n(x) = P_n^*(x) - P_n^*(0) \quad (n = 1, 2, 3, \ldots)
\]

have desired properties.

We shall now isolate those properties of the polynomials which make the Weierstrass theorem possible.

7.28 Definition A family \(\mathcal{A}\) of complex functions defined on a set \(E\) is said to be an algebra if (i) \(f + g \in \mathcal{A}\), (ii) \(fg \in \mathcal{A}\), and (iii) \(cf \in \mathcal{A}\) for all \(f, g \in \mathcal{A}\) and for all complex constants \(c\), that is, if \(\mathcal{A}\) is closed under addition, multiplication, and scalar multiplication. We shall also have to consider algebras of real functions; in this case, (iii) is of course only required to hold for all real \(c\).

If \(\mathcal{A}\) has the property that \(f \in \mathcal{A}\) whenever \(f_n \in \mathcal{A}\) \((n = 1, 2, 3, \ldots)\) and \(f_n \to f\) uniformly on \(E\), then \(\mathcal{A}\) is said to be uniformly closed.

Let \(\mathcal{B}\) be the set of all functions which are limits of uniformly convergent sequences of members of \(\mathcal{A}\). Then \(\mathcal{B}\) is called the uniform closure of \(\mathcal{A}\). (See Definition 7.14.)

For example, the set of all polynomials is an algebra, and the Weierstrass theorem may be stated by saying that the set of continuous functions on \([a, b]\) is the uniform closure of the set of polynomials on \([a, b]\).

7.29 Theorem Let \(\mathcal{B}\) be the uniform closure of an algebra \(\mathcal{A}\) of bounded functions. Then \(\mathcal{B}\) is a uniformly closed algebra.

Proof If \(f \in \mathcal{B}\) and \(g \in \mathcal{B}\), there exist uniformly convergent sequences \(\{f_n\}, \{g_n\}\) such that \(f_n \to f, g_n \to g\) and \(f_n \in \mathcal{A}, g_n \in \mathcal{A}\). Since we are dealing with bounded functions, it is easy to show that

\[
f_n + g_n \to f + g, \quad f_n g_n \to fg, \quad cf_n \to cf,
\]

where \(c\) is any constant, the convergence being uniform in each case.

Hence \(f + g \in \mathcal{B}, fg \in \mathcal{B}, \) and \(cf \in \mathcal{B}\), so that \(\mathcal{B}\) is an algebra.

By Theorem 2.27, \(\mathcal{B}\) is (uniformly) closed.
7.30 Definition Let \mathcal{A} be a family of functions on a set E. Then \mathcal{A} is said to separate points on E if to every pair of distinct points $x_1, x_2 \in E$ there corresponds a function $f \in \mathcal{A}$ such that $f(x_1) \neq f(x_2)$.

If to each $x \in E$ there corresponds a function $g \in \mathcal{A}$ such that $g(x) \neq 0$, we say that \mathcal{A} vanishes at no point of E.

The algebra of all polynomials in one variable clearly has these properties on R^1. An example of an algebra which does not separate points is the set of all even polynomials, say on $[-1, 1]$, since $f(-x) = f(x)$ for every even function f.

The following theorem will illustrate these concepts further.

7.31 Theorem Suppose \mathcal{A} is an algebra of functions on a set E, \mathcal{A} separates points on E, and \mathcal{A} vanishes at no point of E. Suppose x_1, x_2 are distinct points of E, and c_1, c_2 are constants (real if \mathcal{A} is a real algebra). Then \mathcal{A} contains a function f such that

$$f(x_1) = c_1, \quad f(x_2) = c_2.$$

Proof The assumptions show that \mathcal{A} contains functions g, h, k such that

$$g(x_1) \neq g(x_2), \quad h(x_1) \neq 0, \quad k(x_2) \neq 0.$$

Put

$$u = gk - g(x_1)k, \quad v = gh - g(x_2)h.$$

Then $u \in \mathcal{A}, v \in \mathcal{A}, u(x_1) = v(x_2) = 0, u(x_2) \neq 0$, and $v(x_1) \neq 0$. Therefore

$$f = \frac{c_1v}{v(x_1)} + \frac{c_2u}{u(x_2)}$$

has the desired properties.

We now have all the material needed for Stone's generalization of the Weierstrass theorem.

7.32 Theorem Let \mathcal{A} be an algebra of real continuous functions on a compact set K. If \mathcal{A} separates points on K and if \mathcal{A} vanishes at no point of K, then the uniform closure \mathcal{B} of \mathcal{A} consists of all real continuous functions on K.

We shall divide the proof into four steps.

STEP 1 If $f \in \mathcal{B}$, then $|f| \in \mathcal{B}$.

Proof Let

$$a = \sup |f(x)| \quad (x \in K)$$

(52)
and let $\varepsilon > 0$ be given. By Corollary 7.27 there exist real numbers c_1, \ldots, c_n such that

$$|\sum_{i=1}^{n} c_i y^i - |y| < \varepsilon \quad (-a \leq y \leq a).$$

Since \mathcal{B} is an algebra, the function

$$g = \sum_{i=1}^{n} c_i f^i$$

is a member of \mathcal{B}. By (52) and (53), we have

$$|g(x) - |f(x)|| < \varepsilon \quad (x \in K).$$

Since \mathcal{B} is uniformly closed, this shows that $|f| \in \mathcal{B}$.

STEP 2 If $f \in \mathcal{B}$ and $g \in \mathcal{B}$, then $\max (f, g) \in \mathcal{B}$ and $\min (f, g) \in \mathcal{B}$.

By $\max (f, g)$ we mean the function h defined by

$$h(x) = \begin{cases} f(x) & \text{if } f(x) \geq g(x), \\ g(x) & \text{if } f(x) < g(x), \end{cases}$$

and $\min (f, g)$ is defined likewise.

Proof Step 2 follows from step 1 and the identities

$$\max (f, g) = \frac{f + g}{2} + \frac{|f - g|}{2},$$

$$\min (f, g) = \frac{f + g}{2} - \frac{|f - g|}{2}.$$

By iteration, the result can of course be extended to any finite set of functions: If $f_1, \ldots, f_n \in \mathcal{B}$, then $\max (f_1, \ldots, f_n) \in \mathcal{B}$, and

$$\min (f_1, \ldots, f_n) \in \mathcal{B}.$$

STEP 3 Given a real function f, continuous on K, a point $x \in K$, and $\varepsilon > 0$, there exists a function $g_x \in \mathcal{B}$ such that $g_x(x) = f(x)$ and

$$g_x(t) > f(t) - \varepsilon \quad (t \in K).$$

Proof Since $\mathcal{A} \subset \mathcal{B}$ and \mathcal{A} satisfies the hypotheses of Theorem 7.31 so does \mathcal{B}. Hence, for every $y \in K$, we can find a function $h_y \in \mathcal{B}$ such that

$$h_y(x) = f(x), \quad h_y(y) = f(y).$$
By the continuity of h_y there exists an open set J_y, containing y, such that

$$h_y(t) > f(t) - \varepsilon \quad (t \in J_y).$$

(56)

Since K is compact, there is a finite set of points y_1, \ldots, y_n such that

$$K \subseteq J_{y_1} \cup \cdots \cup J_{y_n}.$$

(57)

Put

$$g_x = \max (h_{y_1}, \ldots, h_{y_n}).$$

By step 2, $g \in \mathcal{B}$, and the relations (55) to (57) show that g_x has the other required properties.

STEP 4 Given a real function f, continuous on K, and $\varepsilon > 0$, there exists a function $h \in \mathcal{B}$ such that

$$|h(x) - f(x)| < \varepsilon \quad (x \in K).$$

(58)

Since \mathcal{B} is uniformly closed, this statement is equivalent to the conclusion of the theorem.

Proof Let us consider the functions g_x, for each $x \in K$, constructed in step 3. By the continuity of g_x, there exist open sets V_x containing x, such that

$$g_x(t) < f(t) + \varepsilon \quad (t \in V_x).$$

(59)

Since K is compact, there exists a finite set of points x_1, \ldots, x_m such that

$$K \subseteq V_{x_1} \cup \cdots \cup V_{x_m}.$$

(60)

Put

$$h = \min (g_{x_1}, \ldots, g_{x_m}).$$

By step 2, $h \in \mathcal{B}$, and (54) implies

$$h(t) > f(t) - \varepsilon \quad (t \in K),$$

(61)

whereas (59) and (60) imply

$$h(t) < f(t) + \varepsilon \quad (t \in K).$$

(62)

Finally, (58) follows from (61) and (62).
Theorem 7.32 does not hold for complex algebras. A counterexample is

given in Exercise 21. However, the conclusion of the theorem does hold, even

for complex algebras, if an extra condition is imposed on \(\mathcal{A} \), namely, that \(\mathcal{A} \)

be self-adjoint. This means that for every \(f \in \mathcal{A} \) its complex conjugate \(\overline{f} \)

must also belong to \(\mathcal{A} \); \(\overline{f} \) is defined by \(\overline{f}(x) = \overline{f(x)} \).

7.33 Theorem Suppose \(\mathcal{A} \) is a self-adjoint algebra of complex continuous

functions on a compact set \(K \), \(\mathcal{A} \) separates points on \(K \), and \(\mathcal{A} \) vanishes at no

point of \(K \). Then the uniform closure \(\mathcal{B} \) of \(\mathcal{A} \) consists of all complex continuous

functions on \(K \). In other words, \(\mathcal{A} \) is dense \(\mathcal{C}(K) \).

Proof Let \(\mathcal{A}_R \) be the set of all real functions on \(K \) which belong to \(\mathcal{A} \).

If \(f \in \mathcal{A} \) and \(f = u + iv \), with \(u, v \) real, then \(2u = f + \overline{f} \), and since \(\mathcal{A} \)

is self-adjoint, we see that \(u \in \mathcal{A}_R \). If \(x_1 \neq x_2 \), there exists \(f \in \mathcal{A} \)

such that \(f(x_1) = 1, f(x_2) = 0 \); hence \(0 = u(x_2) = u(x_1) = 1 \), which shows that

\(\mathcal{A}_R \) separates points on \(K \). If \(x \in K \), then \(g(x) \neq 0 \) for some \(g \in \mathcal{A} \), and

there is a complex number \(\lambda \) such that \(\lambda g(x) > 0 \); if \(f = \lambda g, f = u + iv \), it

follows that \(u(x) > 0 \); hence \(\mathcal{A}_R \) vanishes at no point of \(K \).

Thus \(\mathcal{A}_R \) satisfies the hypotheses of Theorem 7.32. It follows that

every real continuous function on \(K \) lies in the uniform closure of \(\mathcal{A}_R \),

hence lies in \(\mathcal{B} \). If \(f \) is a complex continuous function on \(K \), \(f = u + iv \),

then \(u \in \mathcal{B}, v \in \mathcal{B} \), hence \(f \in \mathcal{B} \). This completes the proof.

EXERCISES

1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

2. If \(\{f_n\} \) and \(\{g_n\} \) converge uniformly on a set \(E \), prove that \(\{f_n + g_n\} \) converges uniformly on \(E \). If, in addition, \(\{f_n\} \) and \(\{g_n\} \) are sequences of bounded functions, prove that \(\{f_n g_n\} \) converges uniformly on \(E \).

3. Construct sequences \(\{f_n\}, \{g_n\} \) which converge uniformly on some set \(E \), but such that \(\{f_n g_n\} \) does not converge uniformly on \(E \) (of course, \(\{f_n g_n\} \) must converge on \(E \)).

4. Consider

\[
 f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x^2} .
\]

For what values of \(x \) does the series converge absolutely? On what intervals does it converge uniformly? On what intervals does it fail to converge uniformly? Is \(f \)
continuous wherever the series converges? Is \(f \) bounded?