Vector fields

Exercise 1. Consider the smooth vector field \(v = x^k \frac{\partial}{\partial x}, k \geq 0 \) on the real line \(X = \mathbb{R} \). The flow \(\Phi_v(x, t) \) of the vector field \(v \) for time \(t \) starting at \(x \in X \) is defined for \((x, t) \) in an open subset \(U \subset X \times \mathbb{R} \). Determine this open set precisely for each \(k \).

Exercise 2. Let \(v \) be a vector field on the manifold \(M \), and suppose it vanishes at the point \(p \in M \). In coordinates \((x^1, \ldots, x^n)\) centered at \(p \), we may write
\[
v = \sum_{i=1}^{n} v^i \frac{\partial}{\partial x^i},
\]
and the following expression defines an endomorphism of \(T_p M \):
\[
d_p v = \sum_{i=1}^{n} (dv^i) \big|_p \otimes \frac{\partial}{\partial x^i} \big|_p \in T^*_p M \otimes T_p M.
\]
Prove that \(d_p v \) does not depend on the choice of coordinates centered at \(p \).

Exercise 3. Let \(v \) be a vector field on \(M = \mathbb{R}^2 \) with an isolated zero at the origin. For a sufficiently small circle \(\gamma(t) = \varepsilon e^{it} \), the normalized vector field
\[
\sigma(t) = \frac{v(\gamma(t))}{|v(\gamma(t))|}
\]
defines a map \(S^1 \to S^1 \). The winding number of this map is called the index of the vector field at the origin.

1. Provide an explicit family of vector fields \(v_k \) on the plane with index \(k \) at the origin for \(k \in \mathbb{Z} \).

2. Given a continuous family \(v_t \) of vector fields on \(\mathbb{R}^2 \) parametrized by \(t \in \mathbb{R} \), such that \(v_t \) always has a single zero in the unit disc at the origin, prove that the index remains constant in the family. [This requires a basic understanding of what the fundamental group is, in particular the fact \(\pi_1(S^1) = \mathbb{Z} \).]

3. Suppose that the vector field \(v \) on \(\mathbb{R}^2 \) is nonvanishing on the unit circle \(\gamma(t) = e^{it} \), and suppose that the winding number of the map (1) is nonzero. Prove that \(v \) must have a zero somewhere in the unit disc.

4. Use the above to prove that \(S^2 \) cannot have a nowhere-vanishing vector field. Use the description of \(S^2 \) and its tangent bundle in terms of a pair of stereographic charts.
Transversality

Vector subspaces U, V of W are transverse when $U + V = W$. Two submanifolds K, L of the manifold M intersect transversally if at each point $p \in K \cap L$, the tangent spaces T_pK and T_pL are transverse in $T_p M$.

Exercise 4. Prove that if the submanifolds K, L of M intersect transversally, then $K \cap L$ is also a submanifold. Also, determine the dimension of the intersection.

For each $k = 0, 1, \ldots$ give an example of two transversally intersecting submanifolds L, K of $S^1 \times S^1$ which intersect in exactly k points.

Exercise 5. Sard’s theorem states that for any smooth map, the set of critical values has measure zero in the codomain. In other words, the regular values are dense. Recall that for a point y in the codomain of f to be regular, each point in the preimage $f^{-1}(y)$ must be regular, i.e. have surjective derivative. (Important point: if $f^{-1}(y)$ is empty, then y is regular!).

1. If $f : M \to M$ is a smooth map from a compact manifold to itself, prove that there must be a point $y \in M$ with $f^{-1}(y)$ finite.

2. If $f : M \to S^n$ is a smooth map and $\dim M < n$, prove that f is smoothly homotopic to a constant map. ‘Smoothly homotopic’ in this case would mean that you have a smooth map

 $$F : M \times [0, 1] \to S^n$$

 with $F(-, 0) = f(-)$ and $F(-, 1)$ being a constant map.

Exercise 6. We say that a smooth map $f : K \to M$ is transverse to the submanifold $L \subset M$ if $Df(T_pK) + T_{f(p)}L = T_{f(p)}M$ for all $p \in f^{-1}(L)$. If f were an embedding of the submanifold K, we would recover the usual notion of transversality.

Let S be another manifold (think of it as a parameter space) and suppose that $F : K \times S \to M$ is a smooth map which is transverse to L. We would like to know if the individual maps $F(-, s) : K \to M$, where s is fixed, are transverse to L.

1. Prove that $Q = F^{-1}(L)$ is a smooth submanifold of $K \times S$.

2. Let $\pi : Q \to S$ be the projection map. Prove that if s is a regular value for π, then $F(-, s) : K \to M$ is transverse to L. Conclude that $F(-, s) : K \to M$ is transverse to L for almost all s.

Exercise 7. Let f be a smooth real-valued function on the compact manifold M such that df is transverse to the zero section, meaning that the image of the section $df \in \Gamma(M, T^*M)$ in T^*M defines a submanifold which intersects the image of the zero section transversally. Prove that f has finitely many critical points, at each of which its Hessian is nondegenerate.