Preface

Vladimir Igorevich Arnold is one of the most influential mathematicians of our era. V.I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains:

KAM (Kolmogorov-Arnold-Moser) theory,
The Arnold conjectures in symplectic topology,
The Hilbert-Arnold problem for the number of zeros of abelian integrals,
Arnold’s inequality, comparison, and complexification method in real algebraic geometry,
Arnold-Kolmogorov solution of Hilbert’s 13th problem,
Arnold’s spectral sequence in singularity theory,
Arnold diffusion,
The Euler-Poincaré-Arnold equations for geodesics on Lie groups,
Arnold’s stability criterion in hydrodynamics,
ABC (Arnold-Beltrami-Childress) flows in fluid dynamics,
The Arnold-Korkina dynamo,
Arnold’s cat map,
The Arnold-Liouville theorem in integrable systems,
Arnold’s continued fractions,
Arnold’s interpretation of the Maslov index,
Arnold’s relation in cohomology of braid groups,
Arnold tongues in bifurcation theory,
The Jordan-Arnold normal forms for families of matrices,
The Arnold invariants of plane curves.

Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold’s books on Ordinary differential equations and Mathematical methods of classical mechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world.
V.I. Arnold was born on June 12, 1937 in Odessa, USSR. In 1954-1959 he was a student at the Department of Mechanics and Mathematics, Moscow State University. His M.Sc. Diploma work was entitled “On mappings of a circle to itself.” The degree of a “candidate of physical-mathematical sciences” was conferred to him in 1961 by the Keldysh Applied Mathematics Institute, Moscow, and his thesis advisor was A.N. Kolmogorov. The thesis described the representation of continuous functions of three variables as superpositions of continuous functions of two variables, thus completing the solution of Hilbert’s 13th problem. Arnold obtained this result back in 1957, being a third year undergraduate student. By then A.N. Kolmogorov showed that continuous functions of more variables can be represented as superpositions of continuous functions of three variables. The degree of a “doctor of physical-mathematical sciences” was awarded to him in 1963 by the same Institute for Arnold’s thesis on the stability of Hamiltonian systems, which became a part of what is now known as KAM theory.

After graduating from Moscow State University in 1959, Arnold worked there until 1986 and then at the Steklov Mathematical Institute and the University of Paris IX.


Arnold has been a recipient of many awards among which are the Lenin Prize (1965, with Andrey Kolmogorov), the Crafoord Prize (1982, with Louis Nirenberg), the Lobachevsky Prize of Russian Academy of Sciences (1992), the Harvey prize (1994), the Dannie Heineman Prize for Mathematical Physics (2001), the Wolf Prize in Mathematics (2001), the State Prize of the Russian Federation (2007), and the Shaw Prize in mathematical sciences (2008).
One of the most unusual distinctions is that there is a small planet Vladarnolda, discovered in 1981 and registered under #10031, named after Vladimir Arnold. As of 2006 Arnold was reported to have the highest citation index among Russian scientists.

In one of his interviews V.I. Arnold said: “The evolution of mathematics resembles the fast revolution of a wheel, so that drops of water fly off in all directions. Current fashion resembles the streams that leave the main trajectory in tangential directions. These streams of works of imitation are the most noticeable since they constitute the main part of the total volume, but they die out soon after departing the wheel. To stay on the wheel, one must apply effort in the direction perpendicular to the main flow.”

With this volume Springer starts an ongoing project of putting together Arnold’s work since his very first papers (not including Arnold’s books.) Arnold continues to do research and write mathematics at an enviable pace. From an originally planned 8 volume edition of his Collected Works, we already have to increase this estimate to 10 volumes, and there may be more. The papers are organized chronologically. One might regard this as an attempt to trace to some extent the evolution of the interests of V.I.Arnold and corresponding mathematical fashions. They are presented using the original English translations, whenever such were available. Although Arnold’s works are very diverse in terms of subjects, we group each volume around particular topics, most of which occupied Arnold’s attention during the corresponding period.

Volume I covers the years 1957 to 1965 and is devoted mostly to the representations of functions, celestial mechanics, and to what is today known as the KAM theory.

Volume II covers years 1966 to 1972 and mostly deals with hydrodynamics, bifurcation theory, and algebraic geometry.

Acknowledgements. The Editors thank the Göttingen library for providing the article originals for this edition. They also thank the Springer office in Heidelberg for their multilateral help and making this huge project of the Collected Works a reality.