1. Let \(\{V_i\}_{i \in I} \) be a collection (possibly infinite) of vector spaces. There are two ways to take the “direct sum” of all these vector spaces. First we have the direct sum

\[
\bigoplus_{i \in I} V_i := \{(v_i)_{i \in I} : v_i \in V_i \text{ and } v_i \text{ is non-zero for only finitely-many } i\}
\]

and we have the direct product

\[
\prod_{i \in I} V_i := \{(v_i)_{i \in I} : v_i \in V_i\}
\]

In each case, they are vector spaces, with addition and scalar multiplication defined in the obvious way.

In each case we have inclusion map \(\phi_i : V_i \to \bigoplus_{i \in I} V_i \) and \(\phi_i : V_i \to \prod_{i \in I} V_i \) and projection maps \(\psi_i : \bigoplus_{i \in I} V_i \to V_i \) and \(\psi_i : \prod_{i \in I} V_i \to V_i \).

For each of the two following statements, fill in the blank with either the direct sum or the direct product and then prove the statement.

(a) Let \(X \) be a vector space and let \(T_i : V_i \to X \) be linear maps for all \(i \in I \). There exists a unique linear map \(T : \quad \to X \) such that \(T_i = T \circ \phi_i \) for all \(i \).

(b) Let \(X \) be a vector space and let \(U_i : X \to V_i \) be linear maps for all \(i \in I \). There exists a unique linear map \(U : X \to \quad \) such that \(U_i = \psi_i \circ U \) for all \(i \).
2. Let I be any set and let
$$\mathbb{F}[I] = \{(a_i)_{i \in I} : a_i \in \mathbb{F} \text{ is non-zero for only finitely-many } i\}$$

Let $e_i \in \mathbb{F}[I]$ be the “tuple” which is 1 in the ith slot and 0 elsewhere.

Let X be a vector space and for each $i \in I$, let $x_i \in X$. Prove that there exists a unique linear map $T : \mathbb{F}[I] \to X$ such that $T(e_i) = x_i$ for all $i \in I$.

3. Given an example of an element of $\mathbb{F}^2 \otimes \mathbb{F}^2$ which cannot be written as $v \otimes w$.

4. Let V and W be vector spaces. If $\alpha \in V^*$ and $w \in W$, define $T_{\alpha,w} : V \to W$ by $T_{\alpha,w}(v) = \alpha(v)w$.

(a) Prove that for any α, w, $T_{\alpha,w}$ is a linear map.

(b) Define a linear map $\psi : V^* \otimes W \to L(V, W)$ by $\psi(\alpha \otimes w) = T_{\alpha,w}$. Prove that ψ is well-defined and that it is an isomorphism of vector spaces when V, W are finite-dimensional.

(c) Let $T \in L(V, W)$. Prove that $T = \psi(\alpha \otimes w)$ for some $\alpha \in V^*$, $w \in W$ if and only if $\text{rank}(T) \leq 1$.

5. (a) Let A and B be upper-triangular square matrices. Prove that $A \otimes B$ is also upper triangular.

(b) Let $T : V \to V$ and $U : W \to W$ be linear operators. We have the linear operator $T \otimes U : V \otimes W \to V \otimes W$. If λ is an eigenvalue of T and μ is an eigenvalue of U, prove that $\lambda\mu$ is an eigenvalue of $T \otimes U$.

(c) Assume $\mathbb{F} = \mathbb{C}$. Use (a) to prove that every eigenvalue of $T \otimes U$ can be written as $\lambda\mu$ where λ is an eigenvalue of T and μ is an eigenvalue of U.

2