1 Symmetric bilinear forms

We will now assume that the characteristic of our field is not 2 (so $1 + 1 \neq 0$).

1.1 Quadratic forms

Let H be a symmetric bilinear form on a vector space V. Then H gives us a function $Q : V \to F$ defined by $Q(v) = H(v, v)$. Q is called a quadratic form. We can recover H from Q via the equation

$$H(v, w) = \frac{1}{2}(Q(v + w) - Q(v) - Q(w))$$

Quadratic forms are actually quite familiar objects.

Proposition 1.1. Let $V = F^n$. Let Q be a quadratic form on F^n. Then $Q(x_1, \ldots, x_n)$ is a polynomial in n variables where each term has degree 2. Conversely, every such polynomial is a quadratic form.

Proof. Let Q be a quadratic form. Then

$$Q(x_1, \ldots, x_n) = [x_1 \cdots x_n]A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

for some symmetric matrix A.

Expanding this out, we see that

$$Q(x_1, \ldots, x_n) = \sum_{1 \leq i, j \leq n} A_{ij}x_ix_j$$

and so it is a polynomial with each term of degree 2. Conversely, any polynomial of degree 2 can be written in this form.

Example 1.2. Consider the polynomial $x^2 + 4xy + 3y^2$. This the quadratic form coming from the bilinear form H_A defined by the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$.

We can use this knowledge to understand the graph of solutions to \(x^2 + 4xy + 3y^2 = 1 \). Note that \(H_A \) has a diagonal matrix \[
\begin{bmatrix}
1 & 0 \\
0 & -1
\end{bmatrix}
\] with respect to the basis \((1, 0), (-2, 1)\). This shows that \(Q(a(1, 0) + b(-2, 1)) = a^2 - b^2 \). Thus the solutions of \(x^2 + 4xy + 3y^2 = 1 \) are obtained from the solutions to \(a^2 - b^2 = 1 \) by a linear transformation. Thus the graph is a hyperbola.

1.2 Diagonalization

As we saw before, the bilinear form is symmetric if and only if it is represented by a symmetric matrix. We now will consider the problem of finding a basis for which the matrix is diagonal. We say that a bilinear form is diagonalizable if there exists a basis for \(V \) for which \(H \) is represented by a diagonal matrix.

Lemma 1.3. Let \(H \) be a non-trivial bilinear form on a vector space \(V \). Then there exists \(v \in V \) such that \(H(v, v) \neq 0 \).

Proof. There exist \(u, w \in V \) such that \(H(u, w) \neq 0 \). If \(H(u, u) \neq 0 \) or \(H(w, w) \neq 0 \), then we are done. So we assume that both \(u, w \) are isotropic. Let \(v = u + w \). Then \(H(v, v) = 2H(u, w) \neq 0 \).

Theorem 1.4. Let \(H \) be a symmetric bilinear form on a vector space \(V \). Then \(H \) is diagonalizable.

This means that there exists a basis \(v_1, \ldots, v_n \) for \(V \) for which \([H]_{v_1,\ldots,v_n} \) is diagonal, or equivalently that \(H(v_i, v_j) = 0 \) if \(i \neq j \).

Proof. We proceed by induction on the dimension of the vector space \(V \). The base case is \(\dim V = 0 \), which is immediate. Assume the result holds for all bilinear forms on vector spaces of dimension \(n - 1 \) and let \(V \) be a vector space of dimension \(n \).

If \(H = 0 \), then we are already done. Assume \(H \neq 0 \), then by the Lemma we get \(v \in V \) such that \(H(v, v) \neq 0 \).

Let \(W = \text{span}(v) \perp \). Since \(v \) is not isotropic, \(W \oplus \text{span}(v) = V \). Since \(\dim W = n - 1 \), the result holds for \(W \). So pick a basis \(v_1, \ldots, v_{n-1} \) for \(W \) for which \(H_W \) is diagonal and then extend to a basis \(v_1, \ldots, v_{n-1}, v \) for \(V \). Since \(v_i \in W, H(v_i, v_i) = 0 \) for \(i = 1, \ldots, n-1 \). Thus the matrix for \(H \) is diagonal.

1.3 Diagonalization in the real case

For this section we will mostly work with real vector spaces. Recall that a symmetric bilinear form \(H \) on a real vector space \(V \) is called positive definite if \(H(v, v) > 0 \) for all \(v \in V, v \neq 0 \). A postive-definite symmetric bilinear form is the same thing as an inner product on \(V \).

Theorem 1.5. Let \(H \) be a symmetric bilinear form on a real vector space \(V \). There exists a basis \(v_1, \ldots, v_n \) for \(V \) such that \([H]_{v_1,\ldots,v_n} \) is diagonal and all the entries are \(1, -1, \) or \(0 \).
We have already seen a special case of this theorem. Recall that if H is an inner product, then there is an orthonormal basis for H. This is the same as a basis for which the matrix for H consists of just 1s on the diagonal.

Proof. By the previous theorem, we can find a basis w_1, \ldots, w_n for V such that $H(w_i, w_j) = 0$ for $i \neq j$. Let $a_i = H(w_i, w_i)$ for $i = 1, \ldots, n$. Define

$$v_i = \begin{cases} \sqrt{a_i} w_i, & \text{if } a_i > 0 \\ \frac{1}{\sqrt{-a_i}} w_i, & \text{if } a_i < 0 \\ w_i, & \text{if } a_i = 0 \end{cases}$$

Then $H(v_i, v_i)$ is either 1, -1, or 0 depending on the three cases above. Also $H(v_i, v_j) = 0$ for $i \neq j$ and so we have found the desired basis. \hfill \square

Corollary 1.6. Let Q be a quadratic form on a vector space V. There exists a basis v_1, \ldots, v_n for V such that the quadratic form is given by

$$Q(x_1v_1 + \cdots + x_nv_n) = x_1^2 + \cdots + x_p^2 - x_{p+1}^2 - \cdots - x_{p+q}^2$$

Proof. Let H be a associated bilinear form. Pick a basis v_1, \ldots, v_n as in the theorem, ordered so that the diagonal entries in the matrix are 1s then -1s, then 0s. The result follows. \hfill \square

Given a symmetric bilinear form H on a real vector space V, pick a basis v_1, \ldots, v_n for V as above. Let p be the number of 1s and q be the number of -1s in the diagonal entries of the matrix. The following result is known (for some reason) as “Sylvester’s Law of Inertia”.

Theorem 1.7. The numbers p, q depend only on the bilinear form. (They do not depend on the choice of basis v_1, \ldots, v_n.)

To prove this result, we will begin with the following discussion which applies to symmetric bilinear forms over any field. Given a symmetric bilinear form H, we define its radical (sometimes also called kernel) to be

$$\text{rad}(H) = \{ w \in V : H(v, w) = 0 \text{ for all } v \in V \}$$

In other words, $\text{rad}(H) = V^\perp$. Another way of thinking about this is to say that $\text{rad}(H) = \text{null}(H^\#)$.

Lemma 1.8. Let H be a symmetric bilinear form on a vector space V. Let v_1, \ldots, v_n be a basis for V and let $A = [H]_{v_1, \ldots, v_n}$. Then

$$\dim \text{rad}(H) = \dim V - \text{rank}(A)$$

Proof. Recall that A is actually the matrix for the linear map $H^\#$. Hence $\text{rank}(A) = \text{rank}(H^\#)$. So the result follows by the rank-nullity theorem for $H^\#$. \hfill \square
Proof of Theorem 1.7. The lemma shows us that \(p + q \) is an invariant of \(H \). So it suffices to show that \(p \) is independent of the basis.

Let
\[
\tilde{p} = \max (\dim W : W \text{ is a subspace of } V \text{ and } H|_W \text{ is positive definite})
\]
Clearly, \(\tilde{p} \) is independent of the basis. We claim that \(p = \tilde{p} \).

Assume that our basis \(v_1, \ldots, v_n \) is ordered so that
\[
H(v_i, v_i) = 1 \text{ for } i = 1, \ldots, p,
\]
\[
H(v_i, v_i) = -1 \text{ for } i = p + 1, \ldots, p + q, \text{ and}
\]
\[
H(v_i, v_i) = 0 \text{ for } i = p + q + 1, \ldots, n
\]
Let \(W = \text{span}(v_1, \ldots, v_p) \). Then \(\dim W = p \) and so \(p \leq \tilde{p} \).

To see that \(\tilde{p} \leq p \), let \(\tilde{W} \) be a subspace of \(V \) such that \(H|_{\tilde{W}} \) is positive definite and \(\dim \tilde{W} = \tilde{p} \).

We claim that \(\tilde{W} \cap \text{span}(v_{p+1}, \ldots, v_n) = 0 \). Let \(v \in \tilde{W} \cap \text{span}(v_{p+1}, \ldots, v_n) \), \(v \neq 0 \). Then \(H(v, v) > 0 \) by the definition of \(\tilde{W} \). On the other hand, if \(v \in \text{span}(v_{p+1}, \ldots, v_n) \), then
\[
v = x_{p+1}v_{p+1} + \cdots + x_nv_n
\]
and so \(H(v, v) = -x_{p+1}^2 - \cdots - x_{p+q}^2 \leq 0 \). We get a contradiction. Hence \(\tilde{W} \cap \text{span}(v_{p+1}, \ldots, v_n) = 0 \).

This implies that
\[
\dim \tilde{W} + \dim \text{span}(v_{p+1}, \ldots, v_n) \leq n
\]
and so \(\tilde{p} \leq n - (n - p) = p \) as desired. \(\square\)

The pair \((p, q)\) is called the signature of the bilinear form \(H \). (Some authors use \(p - q \) for the signature.)

Example 1.9. Consider the bilinear form on \(\mathbb{R}^2 \) given by the matrix \[
\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]
It has signature \((1, -1)\).

Example 1.10. In special relativity, symmetric bilinear forms of signature \((3, 1)\) are used.

In the complex case, the theory simplifies considerably.

Theorem 1.11. Let \(H \) be a symmetric bilinear form on a complex vector space \(V \). Then there exists a basis \(v_1, \ldots, v_n \) for \(V \) for which \([H]_{v_1, \ldots, v_n} \) is a diagonal matrix with only 1s or 0s on the diagonal. The number of 0s is the dimension of the radical of \(H \).

Proof. We follow the proof of Theorem 1.5. We start with a basis \(w_1, \ldots, w_n \) for which the matrix of \(H \) is diagonal. Then for each \(i \) with \(H(w_i, w_i) \neq 0 \), we choose \(a_i \) such that \(a_i^2 = \frac{1}{H(w_i, w_i)} \). Such \(a_i \) exists, since we are working with complex numbers. Then we set \(v_i = a_iw_i \) as before. \(\square\)