A cactus group action on crystals

Iva Halacheva – University of Toronto
(joint w. J. Kamnitzer, L. Rybnikov, A. Weekes)

October 03, 2015
Table of Contents

1. The cactus group
 - Definition
 - Example

2. Crystal action
 - Schützenberger involution
 - Example

3. Monodromy
 - Geometry
 - Shift of argument algebras
 - Main result
Suppose:

\[\mathfrak{g} = \text{finite-dimensional, complex, semisimple Lie algebra} \]
\[\mathfrak{h} = \text{a Cartan subalgebra of } \mathfrak{g} \]
\[\Lambda = \text{the weight lattice of } \mathfrak{g} \]
\[W_\mathfrak{g} = \text{the Weyl group of } \mathfrak{g} \]
\[I = \text{the Dynkin diagram of } \mathfrak{g} \]
\[\{\alpha_i\}_{i \in I} = \text{the simple roots of } \mathfrak{g} \]
\[\theta_J = \text{Dynkin diagram automorphism of } J \subset I \text{ defined using the longest element of the Weyl group of } \mathfrak{g}_J, w_0^J: \]

\[\alpha_{\theta_J(j)} = -w_0^J \cdot \alpha_j \quad \forall j \in J \]
The cactus group

Definition

The **cactus group** J_g corresponding to g is defined by:

Generators: s_J where $J \subset I$ is a connected Dynkin subdiagram of I.

Relations:

1. $s_J^2 = 1 \quad \forall J \subset I$
2. $s_J s_{J'} = s_{J'} s_J \quad \forall J, J' \subset I$ disjoint
3. $s_{J'} s_J = s_{\theta_J(J')} s_J \quad \forall J' \subset J \subset I$
The cactus group

Definition

The **cactus group** J_g corresponding to g is defined by:

Generators: s_J where $J \subset I$ is a connected Dynkin subdiagram of I.

Relations:

1. $s_J^2 = 1 \quad \forall \ J \subset I$
2. $s_J s_{J'} = s_{J'} s_J \quad \forall \ J, J' \subset I$ disjoint
3. $s_{J'} s_J = s_{\theta_J(J')} s_J \quad \forall \ J' \subset J \subset I$

The **pure cactus group** PJ_g is defined by:

$1 \to PJ_g \to J_g \to W_g \to 1$

$s_J \mapsto w_0^J$
Let $g = \mathfrak{sl}_n$ with the usual numbering of the Dynkin nodes:

\[
\begin{array}{cccc}
\circ & \circ & \cdots & \circ \\
1 & 2 & \cdots & n-1 \\
\end{array}
\]

Then $\theta_I(i) = n - i$ and for J_n we have:
Example

Let $g = \mathfrak{sl}_n$ with the usual numbering of the Dynkin nodes:

\[\begin{array}{cccc}
\circ & \circ & \cdots & \circ \\
1 & 2 & \cdots & n - 1 \\
\end{array} \]

Then $\theta_I(i) = n - i$ and for J_n we have:

Generators: $\{s_{p,q}\}_{1 \leq p < q \leq n}$ corresponding to the Dynkin subdiagram with nodes p to $q - 1$.
Example

Let \(g = \mathfrak{sl}_n \) with the usual numbering of the Dynkin nodes:

\[
\begin{array}{cccc}
\circ & \circ & \ldots & \circ \\
1 & 2 & \ldots & n-1
\end{array}
\]

Then \(\theta_I(i) = n - i \) and for \(J_n \) we have:

Generators: \(\{ s_{p,q} \}_{1 \leq p < q \leq n} \) corresponding to the Dynkin subdiagram with nodes \(p \) to \(q - 1 \).

Relations:

1. \(s_{p,q}^2 = 1 \) \(\forall 1 \leq p < q \leq n \)
2. \(s_{p,q}s_{k,l} = s_{k,l}s_{p,q} \) if \([p, q] \) and \([k, l] \) are disjoint
3. \(s_{p,q}s_{k,l} = s_{q+p-l, q+p-k}s_{p,q} \) if \([k, l] \subset [p, q] \)
Example

Let $g = \mathfrak{sl}_n$ with the usual numbering of the Dynkin nodes:

```
  1 -- 2 -- ... -- n - 1
```

Then $\theta_I(i) = n - i$ and for J_n we have:

Generators: $\{ s_{p,q} \}_{1 \leq p < q \leq n}$ corresponding to the Dynkin subdiagram with nodes p to $q - 1$.

Relations:

1. $s_{p,q}^2 = 1 \quad \forall \ 1 \leq p < q \leq n$
2. $s_{p,q}s_{k,l} = s_{k,l}s_{p,q}$ if $[p, q]$ and $[k, l]$ are disjoint
3. $s_{p,q}s_{k,l} = s_{q+p-l, q+p-k}s_{p,q}$ if $[k, l] \subset [p, q]$

$1 \rightarrow PJ_n \rightarrow J_n \rightarrow S_n \rightarrow 1$

$s_{p,q} \mapsto \overline{s_{p,q}}$
The Schützenberger involution

\(B(\lambda) \) - the g-crystal corresponding to the highest weight representation \(V(\lambda) \), with:

- \(b_\lambda, b^{\text{low}}_\lambda \) highest and lowest weight elements
- \(\text{wt} : B(\lambda) \to \Lambda \) weight map
- \(e_i, f_i : B(\lambda) \to B(\lambda) \cup \{0\} \) Kashiwara operators
The Schützenberger involution

$B(\lambda)$ - the g-crystal corresponding to the highest weight representation $V(\lambda)$, with:

- $b_{\lambda}, b_{\lambda}^{\text{low}}$ highest and lowest weight elements
- $\text{wt} : B(\lambda) \to \Lambda$ weight map
- $e_i, f_i : B(\lambda) \to B(\lambda) \cup \{0\}$ Kashiwara operators

Definition

The **Schützenberger involution** $\xi_{\lambda} : B(\lambda) \to B(\lambda)$ is defined by, for all $b \in B(\lambda)$:

$$\xi_{\lambda}(b_{\lambda}) = b_{\lambda}^{\text{low}}$$
$$e_i \xi_{\lambda}(b) = \xi_{\lambda}(f_{\theta(i)}b), \quad f_i \xi_{\lambda}(b) = \xi_{\lambda}(e_{\theta(i)}b)$$
$$\text{wt}(\xi_{\lambda}(b)) = w_0 \cdot \text{wt}(b)$$

More generally, $\xi : B \to B$ for any g-crystal B by applying ξ_{λ} to each connected component $B(\lambda)$.
Theorem

For any g-crystal B, we have an action of the cactus group J_g on B, defined by:

$$s_J(b) = \xi_{B_J}(b)$$

for any $J \subset I$, $b \in B$, where B_J is the restriction of B to the subdiagram J of I.

Action on crystals
Let $g = \mathfrak{sl}_3$, then

$$J_3 = \langle s_1, s_2, s_{12} \mid s_1^2 = s_2^2 = s_{12}^2 = 1, s_1 s_{12} = s_{12} s_2 \rangle.$$

$B(\alpha_1 + \alpha_2) =$ the adjoint representation crystal:

The $B(\alpha_1 + \alpha_2)$ crystal.

The s_{12} action.

The s_1 action.
Theorem (Davis-Januszkiewicz-Scott, 2002)

With the previous notation,

\[PJ_g = \pi_1(\mathbb{P}(h^{\text{reg}}_\mathbb{R})) \]

In the case \(g = \mathfrak{sl}_n \), \(PJ_n = \pi_1(M_0^{n+1}(\mathbb{R})) \), where:

\[M_0^{n+1}(\mathbb{R}) = \frac{(\mathbb{R}P^1)^{n+1} - \Delta)}{PGL_2(\mathbb{R})} \]

\(\Delta \) denotes the thick diagonal.
Consider $S(\mathfrak{g}) \cong \mathbb{C}[\mathfrak{g}]$ with the Poisson bracket $\{\cdot, \cdot\}$ defined by:

1. $\{x, y\} = [x, y] \quad \forall \ x, y \in \mathfrak{g}$
2. $\{fg, h\} = f \{g, h\} + \{f, h\} g \quad \forall \ f, g, h \in S(\mathfrak{g})$

Theorem (Mishchenko-Fomenko ’78, Tarasov ’00, Vinberg ’91)

For any $\mu \in \mathbb{P}(\mathfrak{h}^{\text{reg}})$, the shift of argument algebra

$$A_\mu = \langle F_i, \partial_\mu^n F_i \rangle$$

where $\{F_i\}_{i=1,\ldots,\text{rk}(\mathfrak{g})}$ is a set of algebraically independent generators of $Z(S(\mathfrak{g})) = S(\mathfrak{g})^\mathfrak{g}$, is a maximal Poisson-commutative subalgebra of $S(\mathfrak{g})$.
Conjecture

(Known for \(\mathfrak{g} = \mathfrak{sl}_n \).)

1. The family \(\{ A_\mu \}_\mu \) admits a compactification and lifting \(\{ A_\mu \}_\mu \) to \(U(\mathfrak{g}) \).

2. For any \(\mu \in \overline{P(h_{\text{reg}}^R)} \) and any highest weight \(\mathfrak{g} \)-rep. \(V(\lambda) \), \(A_\mu \) acts on \(V(\lambda) \) with simple spectrum.

3. This induces a covering \(E \xrightarrow{\phi} (\overline{P(h_{\text{reg}}^R)}, \mu_0) \) and so a monodromy action \(\pi_1(\overline{P(h_{\text{reg}}^R)}, \mu_0) \acts \phi^{-1}(\mu_0) \).
Theorem

For \(\mathfrak{g} = \mathfrak{sl}_n \), under the monodromy action:

\[
PJ_\mathfrak{g} = \pi_1(\overline{\mathbb{P}(\mathfrak{h}_{\mathbb{R}}^{\text{reg}})}, \mu_0) \curvearrowright \phi^{-1}(\mu_0)
\]

The two sets \(\phi^{-1}(\mu_0) \cong B(\lambda) \) as \(PJ_\mathfrak{g} \) sets.

Partial results suggest this is true in general.
The End

Thank you!