Aids Allowed: A non-graphing calculator, with empty memory, to be supplied by student.

Instructions: Fill in the information on this page, and make sure your test booklet contains 10 pages. In addition, you should have a multiple-choice answer sheet, on which you should fill in your name, number, tutorial time, tutorial room, and tutor’s name.

This test consists of 10 multiple choice questions, and 4 written-answer questions. For the multiple choice questions you can do your rough work in the test booklet, but you must record your answer by circling the appropriate letter on the answer sheet with your pencil. Each correct answer is worth 4 marks; a question left blank, or an incorrect answer, or two answers for the same question is worth 0. For the written-answer questions, present your solutions in the space provided. The value of each written-answer question is indicated beside it. ENCLOSE YOUR FINAL ANSWER IN A BOX AND WRITE IT IN INK.

TOTAL MARKS: 100

FAMILY NAME: ..

GIVEN NAME: ..

STUDENT NO: ..

SIGNATURE: ..

TUTORIAL TIME and ROOM:

REGCODE and TIMECODE:

T.A.'S NAME: ..

<table>
<thead>
<tr>
<th>REGCODE</th>
<th>REGCODE</th>
<th>ROOM</th>
<th>REGCODE</th>
<th>ROOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>T001A</td>
<td>T001C</td>
<td>B323</td>
<td>T001A</td>
<td>B323</td>
</tr>
<tr>
<td>T010B</td>
<td>T010C</td>
<td>LM123</td>
<td>T010D</td>
<td>BA1240</td>
</tr>
<tr>
<td>T011C</td>
<td>T012A</td>
<td>LM187</td>
<td>T012B</td>
<td>LM187</td>
</tr>
<tr>
<td>T020A</td>
<td>T020C</td>
<td>UG101</td>
<td>T020D</td>
<td>UG101</td>
</tr>
<tr>
<td>T030A</td>
<td>T030C</td>
<td>MB119</td>
<td>T030D</td>
<td>MB119</td>
</tr>
<tr>
<td>T040A</td>
<td>T040C</td>
<td>UC128</td>
<td>T040D</td>
<td>UC128</td>
</tr>
<tr>
<td>T050A</td>
<td>T050C</td>
<td>LM123</td>
<td>T050B</td>
<td>LM123</td>
</tr>
<tr>
<td>T060A</td>
<td>T060C</td>
<td>WS123</td>
<td>T060B</td>
<td>WS123</td>
</tr>
</tbody>
</table>

FOR MARKER ONLY

<table>
<thead>
<tr>
<th>MARKER</th>
<th>MARKER</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>B3</td>
<td>B4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Page 1 of 10
PART A. Multiple Choice

1. \(4\) marks
At what nominal annual rate compounded monthly will $400 grow to $1,000 in 5 years?

A. 18.47% \(\quad\text{Let } r = \text{nominal annual rate}\)
B. 1.54% \[400 \left(1 + \frac{r}{12}\right)^{60} = 1000\]
C. 23.80% \[\left(1 + \frac{r}{12}\right)^{60} = 2.5\]
D. 1.68% \[r = 12 \left\lfloor 2.5 - 1 \right\rfloor = 1846.6\ldots\]
E. 20.11% \(18.47\%\)

2. \(4\) marks
A person owes \(x\) now and \(x\) in 5 years. He plans to pay off both these debts in 3 years by making a single payment of $2,000. If interest is 7% compounded annually then \(x =\)

A. $1,000
B. $1,225.04
C. $816.30
D. $1,167.55
E. $953.07

\[x + x(1.07)^{-5} = 2000(1.07)^{-3}\]
\[x\left[1 + (1.07)^{-5}\right] = 2000(1.07)^{-3}\]
\[x = \frac{2000(1.07)^{-3}}{1 + (1.07)^{-5}}\]
\[x = \$953.07\]

Page 2 of 10
3. [4 marks]
If $350 is deposited in an account which earns interest at 4% compounded quarterly for the first 3 years and then earns 6% compounded semi-annually for the next 3 years, how much will there be in the account at the end of 6 years?

A. $469.03
B. $812.31
C. $470.92
D. $810.56
E. $468.91

\[\begin{align*}
350 \left(1.01\right)^{12} \left(1.03\right)^6 &= \boxed{470.92} \\
\end{align*} \]

4. [4 marks]
Today Mr. Smith has $50,000 saved in an account which is earning 4.2% compounded monthly. He plans to withdraw $2,000 per month, the first withdrawal to be made one month from today. Assuming the interest will never change, how many full $2,000 withdrawals will Mr. Smith be able to make?

\[\begin{align*}
50,000 &= 2000 \left(\frac{1.042}{12} \right)^n \\
25 \times \frac{0.42}{12} &= 1 - \left(1 + \frac{0.42}{12}\right)^{-n} \\
\left(1 + \frac{0.42}{12}\right)^{-n} &= \left(1 - \frac{25 \times 0.42}{12}\right) \\
n &= -\frac{\ln\left(1 - \frac{25 \times 0.42}{12}\right)}{\ln\left(1 + \frac{0.42}{12}\right)} \\
n &= 26.267... \\
\end{align*} \]

26 full withdrawals
5. [4 marks]
A person will pay a $1,000 debt by making 12 equal monthly payments, the first payment to be made now. If interest is 6% compounded monthly, then the amount of each payment is

A. $87.19
B. $85.64
C. $84.25
D. $86.07
E. $83.33

\[
R = \frac{1000}{1 + a_{\frac{12}{12}}} = \frac{1000}{1 + a_{12}}
\]

R = $85.64

6. [4 marks]
Just after a coupon has been clipped, a $1,000 bond has 13 semiannual coupons, which are worth $24 each. If the bond’s annual yield is 5%, then its market price is

A. $989.02
B. $976.37
C. $992.35
D. $1,000.00
E. $981.75

\[
P = 1000(1.025)^{13} + 24 a_{\frac{13}{2}}
\]

P = $989.02
7. [4 marks]

Let \(P = \begin{bmatrix} 10 & 1 & 0 \\ 2 & x & 0 \\ 0 & 0 & 1 \end{bmatrix} \).

Then \(P^{-1} \) exists as long as

A. \(x \neq 0 \)
B. \(x \neq 2 \)
C. \(x \neq -10 \)
D. \(x \neq \frac{1}{5} \)
E. \(x \) is any real number

We only need row-echelon form not to include a row of zeros:

\[
\begin{align*}
R_1 & \rightarrow \frac{1}{10} R_1 \\
R_2 & \rightarrow -2R_1 + R_2 \\
& \begin{pmatrix} 1 & 1/10 & 0 \\ 0 & x - \frac{1}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}
\end{align*}
\]

\(P^{-1} \) exists as long as

\[
X - \frac{1}{5} \neq 0 \quad \text{i.e.} \quad X \neq \frac{1}{5}
\]

8. [4 marks]

If \(X \) is a \(2 \times 2 \) matrix and \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \) then \(X = \)

A. \(\begin{bmatrix} 3 & 6 \\ 1 & -\frac{1}{3} \end{bmatrix} \)
B. \(\begin{bmatrix} -2 & 1 \\ \frac{1}{3} & -\frac{1}{3} \end{bmatrix} \)
C. \(\begin{bmatrix} -\frac{1}{3} & 3 \\ \frac{1}{3} & -1 \end{bmatrix} \)
D. \(\begin{bmatrix} -1 & 2 \\ 1 & -\frac{1}{2} \end{bmatrix} \)
E. \(\begin{bmatrix} 3 & \frac{5}{3} \\ 4 & \frac{4}{5} \end{bmatrix} \)

We have directly

\[
\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}
\]

and

\[
X = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 2 & -4 \\ -2 & 1 \end{pmatrix}
\]

or by row reduction:

\[
\begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 4 & 1 & 4 \end{pmatrix} R_2 \rightarrow -3R_1 + R_2 \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -2 & -2 & 1 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 - \frac{1}{5} \end{pmatrix}
\]

\[
X = \begin{pmatrix} -1 & 2 \\ 1 & -\frac{1}{2} \end{pmatrix}
\]
9. (4 marks)

U, V, and W are matrices. U is 1×3, V is 3×5, and W is 3×1. The matrix product that does not make sense is

A. UV

B. WV

C. WU

D. UW

E. $(UV)^TW^T$

\[
\begin{align*}
&\text{A. } UV & \quad \text{OK} \\
&\text{B. } WV & \quad \text{BAD} \\
&\text{C. } WU & \quad \text{OK} \\
&\text{D. } UW & \quad \text{OK} \\
&\text{E. } (UV)^TW^T & \quad \text{OK}
\end{align*}
\]

10. (4 marks)

If the augmented matrix for a system of linear equations is

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 3 \\
0 & 1 & 3 & 1 & 2
\end{pmatrix}
\]

then the system of equations has

A. no solution

B. a unique solution

C. a 1-parameter family of infinitely many solutions

D. a 2-parameter family of infinitely many solutions

E. a 3-parameter family of infinitely many solutions

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 2 \\
0 & 1 & 2 & 1 & 3 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

so a 1-parameter family of infinitely many solutions
PART B. Written-Answer Questions

1. [16 marks]
A $200,000 mortgage is to be repaid over 25 years by equal monthly payments, the first payment one month after the loan is made. Interest is 5% compounded semi-annually.

5 (a) Find the amount of each payment. (accuracy counts a lot)
\[R = \frac{200,000 \cdot a_{\overline{120}|i}}{1 - (1+i)^{-300}} = \frac{200,000 \cdot [1 - (1.025)^{-30}]}{1 - (1.025)^{-300}} \]
\[R = \$1163.21 \]

5 (b) How much principal is outstanding just after the 120th payment? (accuracy again!)
\[P_0 = 200,000 \cdot a_{\overline{120}|i} = 1163.21 \cdot \frac{[1 - (1.025)^{-30}]}{(1.025)^{120} - 1} = \$147,592.29 \]

or:
\[R = \frac{200,000 \cdot a_{\overline{120}|i}}{1 - (1+i)^{-300}} = \frac{200,000 \cdot [1 - (1.025)^{-30}]}{1 - (1.025)^{-300}} = \text{same answer} \]

5 (c) After which payment will the outstanding principal first be less than one half the original amount of the loan?
Let \(n = \text{number of payments remaining} \).
\[R \cdot a_{\overline{n|i}} = 100,000 \]
\[200,000 \cdot a_{\overline{n|i}} = 100,000 \]
\[a_{\overline{n|i}} = 1 - (1 + i)^{-n} \]
\[1 - (1 + i)^{-n} = \frac{1}{2} \]
\[1 - (1.025)^{-n} = \frac{1}{2} \]
\[1 + (1.025)^{-n} = \frac{1}{2} \]
\[1 + (1.025)^{-n} = \frac{1}{2} \]
\[n = 6 \cdot \ln \left(\frac{1 + (1.025)^{-n}}{2} \right) = 106.37 \ldots \]
\[300 - n = 193.6 \ldots \]
So after 193 payments we’re not there yet.
The answer is \[\boxed{194} \]
2. [17 marks]

Joe plans to give his daughter, Ann, $5,000 on each of her birthdays from her 18th to her 23rd inclusive. To save the necessary money, Joe plans to make equal deposits on each of Ann's birthdays from her 12th to her 17th inclusive, into a fund which earns 7% effective annual interest; the $5,000 gifts are to be made from the same fund. In the following, give answers to the nearest cent.

(a) What should be the amount of each deposit if the 7% interest rate is expected to last at least until after her 23rd birthday.

\[
R = \frac{5000 \cdot 7.07}{5 \cdot 7.07} = \frac{3331.71}{5} = 666.34
\]

(b) Just after Ann's 14th birthday, the interest rate changes to 6% effective annual and is expected to remain 6% until after her 23rd birthday. What should be the amount of each of the remaining deposits (which are all to be equal), if Joe is to achieve his original goal? Let \(T \) be the new payment.

\[
R = \frac{5000 \cdot 6.10}{5 \cdot 6.10} = \frac{3050}{3.05} = 1000
\]

If we accumulate at 14, say

\[
R = 31.07 + Ta_{31.06} = 5000 \cdot 31.06(1.06)^{-3} - 3331.71 = 5000 \cdot 31.06(1.06)^{-3} - 3331.71 = T
\]

\[
T = 3715.77
\]
3. [12 marks]

Mary-Ann is on a diet. Her restrictions are: 1,500 calories per day, and no more than 100 grams of sugar and 20 grams of fat a day. However, she refuses to eat anything but marshmallows, coke and meat. How much of each of these items can she have, if she keeps at the limit of her restrictions, given that

100 grams of meat contains no sugar, 400 calories and 8 grams of fat,
marshmallows are 1/10 fat, half sugar, and contain 500 calories per 100 grams,
and

coke has no fat, 10 grams of sugar and 50 calories per 100 grams.

Let \(X = \text{no. of 100 grams of meat} \),

\(Y = \text{no. of 100 grams of marshmallows} \),

\(Z = \text{no. of 100 grams of coke} \).

Sugar:

\[0X + \frac{1}{2} 100Y + 10Z = 100 \]

Calories:

\[400X + 500Y + 50Z = 1500 \]

Fat:

\[8X + \frac{1}{10} 100Y + 0Z = 20 \]

Calories:

\[8X + 10Y + Z = 30 \]

Fat:

\[5Y + Z = 10 \]

First 2 eqns say \(Z = 10 \), (subtraction)

3rd equation says, then, that \(5Y = 0 \) so \(Y = 0 \).

Then \(X = \frac{20}{8} = 2.5 \)

- 250 g. meat
- No marshmallows
- 1000 g. coke
4. [15 marks]

Given the input/output matrix below for industries A and B

<table>
<thead>
<tr>
<th>Industry A</th>
<th>Industry B</th>
<th>Final Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>80</td>
<td>145</td>
</tr>
<tr>
<td>75</td>
<td>40</td>
<td>85</td>
</tr>
<tr>
<td>Other Production Factors</td>
<td>150</td>
<td>80</td>
</tr>
</tbody>
</table>

If the final demand changes to 90 for industry A and 150 for industry B then find

(a) the new total outputs for industries A and B.

\[
\text{Total production of } A = 250, \quad \text{and } B = 200
\]

\[
\text{Coeff. matrix } = \begin{pmatrix}
\frac{25}{250} & \frac{30}{200} \\
\frac{75}{250} & \frac{40}{200} \\
\frac{150}{250} & \frac{80}{200}
\end{pmatrix}
\]

\[
\text{I-A} = \begin{pmatrix}
\frac{9}{10} & -\frac{2}{5} \\
-\frac{3}{10} & \frac{4}{5}
\end{pmatrix}
\]

\[
(I-A)^{-1} = \begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

(b) the new other production factors for industries A and B.

\[
X = \begin{pmatrix}
\frac{4}{5} & \frac{3}{10}
\end{pmatrix}
\begin{pmatrix}
90 \\
150
\end{pmatrix} = \begin{pmatrix}
\frac{120+100}{50} \\
\frac{45+225}{50}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{4}{5} & \frac{2}{5} \\
\frac{3}{10} & \frac{9}{10}
\end{pmatrix}
\]