Supplementary Questions for HP Chapter 10

1. Evaluate \(\lim_{h \to 0} \frac{(x+h)^n-x^n}{h} \), using the identity \(a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1}) \).

2. Show by example that
 (a) \(\lim_{x \to a} [f(x)+g(x)] \) may exist even though neither \(\lim_{x \to a} f(x) \) nor \(\lim_{x \to a} g(x) \) exists.
 (b) \(\lim_{x \to a} [f(x)g(x)] \) may exist even though neither \(\lim_{x \to a} f(x) \) nor \(\lim_{x \to a} g(x) \) exists.

3. Evaluate
 (a) \(\lim_{x \to 0} \frac{\sqrt[3]{1+cx^2} - 1}{x} \)
 (b) \(\lim_{x \to 1} \frac{\sqrt[3]{x-1}}{\sqrt{x+1} - 1} \)

4. A function \(f(x) \) is said to be an even function if \(f(-x) = f(x) \) for all \(x \) in the domain of \(f \), and an odd function if \(f(-x) = -f(x) \) for all \(x \) in the domain of \(f \).

 Suppose \(f(x) \) is even and \(\lim_{x \to a^+} f(x) = L \).
 (a) Find, if possible, \(\lim_{x \to a} f(x) \).
 (b) Find, if possible, \(\lim_{x \to a^-} f(x) \).
 (c) Find, if possible, \(\lim_{x \to a^+} f(x) \).
 (d) Repeat (a) to (c) for an odd function \(f(x) \).

5. Let \(F(x) = \frac{x^2 - 1}{|x-1|} \)
 (a) Find
 i) \(\lim_{x \to 1^+} F(x) \) ii) \(\lim_{x \to 1^-} F(x) \)
 (b) Does \(\lim_{x \to 1} F(x) \) exist?
 (c) Sketch the graph of \(F \).

6. (a) Let \(r \) be any positive number. Show that \(\frac{1}{r} \ln \left(1 + \frac{r}{n} \right) \) is the slope of the straight line connecting \(g(1) \) and \(g(1 + \frac{r}{n}) \) for the function \(g(x) = \ln(x) \).
 (b) In light of question (a), what is \(\lim_{n \to \infty} \frac{1}{r} \ln(1 + \frac{r}{n}) \) in terms of the function \(g \)? It may help to write \(h = \frac{r}{n} \).
 (c) Write \((1 + \frac{r}{n})^n = e^{n \ln(1 + \frac{r}{n})} \). Show \(\lim_{n \to \infty} (1 + \frac{r}{n})^n = e^r \), remembering \(g'(1) = 1 \).

7. (a) In terms of compound interest, explain why it is reasonable to expect that

\[
\left(1 + \frac{r}{n+1} \right)^{n+1} > \left(1 + \frac{r}{n} \right)^n
\]
where \(r > 0 \), \(n \) is a positive integer.

(b) Show that \(\left(1 + \frac{r}{n+1}\right)^{n+1} > (1 + \frac{r}{n})^n \) using the identity \(a^b = e^{b \ln a} \) and using the fact that \(\frac{2}{r} \ln \left(1 + \frac{r}{n}\right) \) is the slope of the straight line connecting \(g(1) \) and \(g(1 + \frac{r}{n}) \) for the function \(g(x) = \ln x \).

8. (a) Consider the function \(f(x) = \lim_{y \to -\infty} x^y \), for \(0 \leq x \leq 1 \). At what point(s) is \(f(x) \) discontinuous?

(b) Consider the function \(f(x) = \lim_{y \to \infty} \frac{x^y}{x^y - 1} \), for \(x \geq 0 \). At what point(s) is \(f(x) \) discontinuous?

9. Consider the function \(f(x) = x^m \) where \(m \) is an integer, with the convention that \(0^0 = 1 \). What are the condition(s) on \(m \) that indicate whether \(f(x) \) is continuous at \(x = 0 \)?

10. A function \(f(x) \) is said to have a removable discontinuity at \(x = a \) if \(\lim_{x \to a} f(x) \) exists, but either \(f(a) \) is not defined or \(\lim_{x \to a} f(x) \neq f(a) \).

(a) State the (exact) conditions needed for a rational function to have a removable discontinuity at \(x = a \).

(b) Given that the rational function \(\frac{f(x)}{g(x)} \) has a removable discontinuity at \(x = a \), find \(h(x) \) such that:

1) \(h(x) = \frac{f(x)}{g(x)} \) \((x \neq a) \)

2) \(h(x) \) does not have a removable discontinuity at \(x = a \).

11. Let \(f(x) = \frac{|x^2 - 1|}{x^2 - 1} \).

(a) Explain why \(f(x) \) is continuous wherever it is defined.

(b) For each point where \(f(x) \) is not defined, state whether a value can be assigned to \(f(a) \) in such a way as to make \(f \) continuous at \(a \).