DEPARTMENT OF MATHEMATICS
University of Toronto

Topology Exam (3 hours)

January 1997

No aids.
Do all questions.
Each question is worth 20 marks.

1. a) Let \(f: S^2 \times I \to \mathbb{R} \) be continuous. Suppose that \(\min_{p \in S^2} f(p, 0) = 0 \), \(\min_{p \in S^2} f(p, 1) = 1 \).
 Prove that for every \(0 < m < 1 \), \(\exists 0 < t < 1 \) such that \(\min_{p \in S^2} f(p, t) = m \).

b) Does the result in part (a) hold if \(S^2 \) is replaced by \(\mathbb{R}^2 \)? Explain your answer.

2. Let \(X_1 \subset X_2 \subset \cdots \) be a sequence of Hausdorff spaces where \(X_i \) is a closed subspace of \(X_{i+1} \) for each \(i \). Let \(X = \bigcup_{i=1}^{\infty} X_i \). Define the coherent topology on \(X \) by \(U \subset X \) is open \(\iff U \cap X_i \) is open in \(X_i \) \(\forall i \).

a) Verify that this is a topology.

b) Show that \(X_i \) is a subspace of \(X \) in this topology.

c) Suppose that each \(X_i \) is normal; state Tietze’s extension theorem and use it to show that \(X \) is normal.

3. Let \(M \) be a compact connected manifold. (Recall that a manifold is Hausdorff and locally Euclidean, that is, every point has a neighbourhood homeomorphic to an open set in \(\mathbb{R}^n \) for some \(n \).) Let \(\pi: P \to M \) be the universal cover. Show that \(P \) is compact \(\iff \pi_1(M) \) is finite.
4. Let X be the outline of the tetrahedron; that is, $X = \bigcup_{i=1}^{6} L_i \bigcup_{i=1}^{4} P_i$

where L_i are the edges and P_i are the vertices. Calculate $H_*(X; \mathbb{Z})$.

5. a) Calculate $\pi_1(S^2 \times S^1)$.

 b) Calculate $\pi_1(S^2 \times \Delta)$ where $\Delta = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$.

 c) Notice that $S^2 \times S^1 \cong S^2 \times \partial \Delta$. Show that $S^2 \times S^1$ is not a retract of $S^2 \times \Delta$.

Page 2 of 2