DEPARTMENT OF MATHEMATICS
University of Toronto

Algebra Exam (3 hours)

September 1998

No aids.
Do all questions.
All questions are of equal value.

1. Suppose \(A \) is an \(8 \times 8 \) matrix whose characteristic polynomial is \(\lambda^3(\lambda - 1)^2(\lambda - 5)^3 \) and whose minimal polynomial is \(\lambda(\lambda - 1)^2(\lambda - 5)^2 \). What is the dimension of each of its eigenspaces?

2. Classify all groups of order 12.

3. What is the Galois group of (the splitting field of) \(X^3 - 2 \) over \(\mathbb{Q} \)? (Explain your answer.)

4. Give a set of representatives for the conjugacy classes in the symmetric group \(S_5 \), and find the number of elements in each class.

5. If \(p \) is a prime, what is the order of \(GL(2, \mathbb{F}_p) \), the group of invertible \(2 \times 2 \) matrices over the field with \(p \) elements?

6. For which primes \(p \) is every element of the finite field \(\mathbb{F}_p \) equal to the fifth power of an element of the field?

7. Suppose \(f \in \mathbb{Q}[x] \) is an irreducible cubic polynomial for which the Galois group of the splitting field of \(f \) over \(\mathbb{Q} \) is not abelian. How many subfields does the splitting field of \(f \) have, and how many of them are normal? (Explain your answer.)
8. (a) What are the maximal ideals in $\mathbb{C}[x]$? Explain your answer.

(b) Give an example of a ring that contains a prime ideal that is not maximal. Explain your answer.

9. What are the maximal ideals in $\mathbb{R}[x]$? Explain your answer. (Hint: What is $\mathbb{R}[x]/(x^2 + 1)$, where $(x^2 + 1)$ means the principal ideal generated by $x^2 + 1$?)

10. Both \mathbb{Z}_2 and \mathbb{Z}_3 are modules over the ring \mathbb{Z}_6 in a natural way. Identify the tensor product $\mathbb{Z}_2 \otimes_{\mathbb{Z}_6} \mathbb{Z}_3$.

(Here \mathbb{Z}_m means $\mathbb{Z}/(m\mathbb{Z})$...