DEPARTMENT OF MATHEMATICS
University of Toronto

Algebra Exam (3 hours)

January 1997

No aids.
Do all questions.

1. [20 points]
 (a) Prove that the following conditions on a ring R are equivalent.
 (i) R satisfies the ascending chain condition for left ideals.
 (ii) Any nonempty set \mathcal{S} of left ideals has a maximal element.
 (iii) Any left ideal in R is finitely generated.
 (b) Suppose that R satisfies the three conditions of (a), and that I is a left ideal in $R[x]$. Show that any $R[x]$-submodule of $R[x]/I$ is finitely generated.

2. [15 points]
 (a) Prove that any element $g \in GL(n, \mathbb{C})$ has an eigenvalue.
 (b) Let $G_{1,2}$ be the subset of $G = GL(4, \mathbb{C})$ whose eigenvalues are in the set $\{1, 2\}$. Prove that $G_{1,2}$ is invariant under conjugation by G.
 (c) How many G-conjugacy classes are there in $G_{1,2}$?

3. [15 points]
 Suppose that R is an integral domain.
 (a) Define a prime element and an irreducible element in R.
 (b) Prove that any prime element is irreducible.
 (c) Prove that any irreducible element $f(x) \in \mathbb{Z}[x]$ is prime.
 (d) Write down an irreducible polynomial in $\mathbb{Z}[x]$ of degree 6. (Explain your reasons.)
4. [30 points]
 a) State Sylow’s theorem.
 b) What is the order of the group

 \[SL(2, \mathbb{F}_3) = \{ g \in M_2(\mathbb{F}_3) : \det(g) = 1 \}, \]

 and what is the order of its center \(Z \)?
 c) Write down a Sylow 3-subgroup of \(SL(2, \mathbb{F}_3) \).
 d) How many Sylow 3-subgroups does \(SL(2, \mathbb{F}_3) \) have?
 e) Show that \(SL(2, \mathbb{F}_3)/Z \cong A_4 \).

5. [20 points]
 Let \(f(x) \in F[x] \) be a monic polynomial of degree \(n \).
 a) What is meant by the splitting field \(E \) of \(f(x) \) over \(F \)?
 b) Define the Galois group of \(E/F \), and the Galois group of \(f(x) \) over \(F \), and describe
 how the two are related.
 c) If \(\{ \alpha_1, \ldots, \alpha_n \} \) are the roots of \(f(x) \), show that

 \[D = \prod_{1 \leq i, j \leq n} (\alpha_i - \alpha_j)^2 \]

 belongs to \(F \).
 d) Show that the Galois group of \(f(x) \) over \(F \) is contained in \(A_n \) if and only if \(D \)
 has a square root in \(F \).