Mat 247 - Definitions and results on group theory

Definition: Let G be nonempty set together with a binary operation (usually called multiplication) that assigns to each pair of elements $g_1, g_2 \in G$ an element in G, denoted by g_1g_2 or $g_1 \cdot g_2$. We say that G is a group under this operation if the following three properties are satisfied:

- Associativity: $(g_1g_2)g_3 = g_1(g_2g_3)$ for all $g_1, g_2, g_3 \in G$.
- Existence of identity element: There exists an element e (called an identity) in G such that $g \cdot e = e \cdot g = g$ for all $g \in G$.
- Existence of inverses: Let e be an identity element in G. For each element $g \in G$, there is an element $g^{-1} \in G$ (called an inverse of g) such that $g \cdot g^{-1} = g^{-1} \cdot g = e$.

Examples: (details omitted)

1. If F is a field and n is a positive integer, let $GL_n(F) = \{ A \in M_{n \times n}(F) \mid \det(A) \neq 0 \}$. Then $GL_n(F)$ is a group under the operation of matrix multiplication.
2. Let V be a finite-dimensional vector space over a field F. Let $G = \{ T \in L(V) \mid T$ is invertible $\}$. Then $GL(V)$ is a group under the operation of composition of linear transformations.
3. Let n be a positive integer. The set U_n of (complex) unitary $n \times n$ matrices is a group under the operation of matrix multiplication.
4. The set \mathbb{Z} of integers is a group under the operation of addition of integers. (Note: $e = 0$; the inverse of $m \in \mathbb{Z}$ is $-m$.)
5. The set $\mathbb{Z}\{0\}$ of nonzero integers is not a group under the operation of multiplication of integers. The operation is associative and 1 is an identity, but the only nonzero integers that have inverses in $\mathbb{Z}\{0\}$ are 1 and -1.

Definition: If G is a group, we say that G is abelian (or commutative) if $g_1g_2 = g_2g_1$ for all g_1 and $g_2 \in G$. If G is not abelian, we say that G is nonabelian (or noncommutative).

Definition: The order of a group G is the number of elements in G. If the order of G is finite, we say that G is a finite group. Otherwise, we say that G is an infinite group.

If G is an abelian group, the group operation may be written with a plus sign: $g_1 + g_2$ instead of g_1g_2.

Examples. If F is a finite field, then $GL_n(F)$ is a finite group. If F is an infinite field, then $GL_n(F)$ is an infinite group. If $n \geq 2$, then $GL_n(F)$ is a nonabelian group. The notation F^\times is often used for the group $GL(1)$ of nonzero elements in F (with the operation of multiplication in F). The group F^\times is abelian.

Lemma. If G is a group, there is a unique identity element in G. If $g \in G$, there is a unique inverse g^{-1} of g in G.

Proof. If e and e' are identity elements in G, we have $e \cdot e' = e' \cdot e = e$, using that e' is an identity element, and we also have $e \cdot e' = e' \cdot e = e'$, since e is an identity element. Therefore $e \cdot e' = e = e'$. The second part is left as an exercise.

Definition. If H is a (nonempty) subset of a group G and H is itself a group under the operation on G, we say that H is a subgroup of G.

The subset $\{e\}$ of a group G is a subgroup of G. Clearly, G is a subgroup of G. The proof of the following lemma was discussed in class.
Examples:

1. Let $G = \text{GL}_n(F)$, $n \geq 2$, and let $H = \{ A \in G \mid A_{jk} = 0 \text{ whenever } j > k \}$. Then H is a subgroup of G. (Details omitted.)

2. Let V be a vector space of dimension $n \geq 2$, let $G = \text{GL}(V)$, and let $H = \{ T \in G \mid \text{nullity}(T - I_V) > 0 \}$. Let $\beta = \{ x_1, \ldots, x_n \}$ be an ordered basis for V. There exists a unique $T \in \mathcal{L}(V)$ such that $T(x_1) = x_1$ and $T(x_j) = -x_j$, $2 \leq j \leq n$. Check that T is invertible, $\text{nullity}(T - I_V) = 1$, $-T$ is invertible, and $\text{nullity}(-T - I_V) = n - 1$ (left as an exercise). This implies that $T, -T \in H$. Let $T \circ (-T)$ be identity elements in H. This implies that H is not a subgroup of G.

3. Let $G = \text{GL}_n(F), n \geq 2$. Let D_n be the set of diagonal matrices in G. Then D_n is a subgroup of G, and D_n is abelian. (This example shows that there can be nontrivial abelian subgroups of nonabelian groups.)

Definition. A subgroup H of a group G is said to be normal in G if $ghg^{-1} \in H$ for all $g \in G$ and $h \in H$.

Examples. (details omitted)

1. Let $G = \text{GL}_2(F)$ and let $H = \{ A \in G \mid A_{21} = 0 \}$. Then H is a subgroup of G but H is not normal in G. (Note that $h = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in H$, Let $g = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Show that $g \in G$ and $ghg^{-1} \notin H$.)

2. Let $G = \text{GL}_n(F), n \geq 2$, and let $H = \text{SL}_n(F) = \{ A \in G \mid \det(A) = 1 \}$. Then H is a normal subgroup of G. (This is easily proved using properties of determinants.)

3. If G is an abelian group, then any subgroup H of G is normal in G because $ghg^{-1} = h(g \cdot g^{-1}) = h \cdot e = h$ for all $h \in H$ and $g \in G$.

Definition. If G and G' are groups, a map $\varphi : G \to G'$ is a homomorphism if $\varphi(g_1 g_2) = \varphi(g_1) \varphi(g_2)$ for all g_1 and $g_2 \in G$.

Examples. (details omitted)

1. Then $\det : \text{GL}_n(F) \to F^\times = \text{GL}_1(F)$ is a homomorphism.

2. If G is a nonabelian group, the map $\varphi : G \to G$ defined by $\varphi(g) = g^2$ is not a homomorphism. (Here, $g^2 = g \cdot g$, $g \in G$.)

Notation. If G is a group, $g \in G$, and $n \in \mathbb{Z}$, define $g^0 = e$, $g^n = g \cdot g^{n-1}$, $n \geq 1$, and $g^n = (g^{-1})^{-n}$, $n \leq -1$.

Lemma. Let G and G' be groups and let $\varphi : G \to G'$ be a homomorphism.

1. Let e and e' be identity elements in G and G', respectively. Then $\varphi(e) = e'$.

2. If $g \in G$ and $n \in \mathbb{Z}$, then $\varphi(g^n) = (\varphi(g))^n$.

Definition: Let G and G' be groups and let $\varphi : G \to G'$ be a homomorphism.

1. The kernel of φ is defined to be $\{ g \in G \mid \varphi(g) = e' \}$. Here, e' is the identity element in G'.

2. The image of φ is defined to be $\varphi(G) = \{ \varphi(g) \mid g \in G \}$.

2
Theorem. Let \(\varphi : G \rightarrow G' \) be a homomorphism. Then

1. The kernel of \(\varphi \) is a normal subgroup of \(G \).
2. \(\varphi \) is one-to-one if and only if the kernel of \(\varphi \) is equal to \(\{ e \} \).
3. The image \(\varphi(G) \) of \(\varphi \) is a subgroup of \(G' \).

Examples.

1. The kernel of \(\det : GL_n(F) \rightarrow F^\times \) is \(SL_n(F) \). Therefore \(SL_n(F) \) is a normal subgroup of \(GL_n(F) \).

2. The map \(\varphi : Z \rightarrow Z \) defined by \(\varphi(m) = 3m \) is a homomorphism. (Here, the operation on \(Z \) is addition of integers and we use additive notation for this operation.) The kernel of \(\varphi \) is equal to \(\{ e \} = \{ 0 \} \), so \(\varphi \) is one-to-one. Note that \(\varphi(Z) = \{ 3m \mid m \in Z \} \neq Z \).

Definition. Suppose that \(G \) is a group and \(g \in G \).

1. we say that \(g \) has finite order if \(g^n = e \) for some positive integer \(n \). In this case, the smallest positive integer such that \(g^n = e \) is called the order of \(g \).
2. If \(g^n \neq e \) for all positive integers \(n \), we say that \(g \) has infinite order.

Definition. Suppose that \(S \) is a nonempty subset of a group \(G \). The subgroup generated by \(S \), written \(\langle S \rangle \), is defined to be the smallest subgroup of \(G \) that contains the set \(S \). If \(\langle S \rangle = G \), we say that \(S \) is a set of generators for the group \(G \). If \(G = \langle g \rangle \) for some element \(g \in G \), we say that \(G \) is a cyclic group.

Lemma. If \(S \) is a subset of a group \(G \) and \(G = \langle S \rangle \), then \(G \) is abelian if and only if \(g_1g_2 = g_2g_1 \) for all \(g_1 \) and \(g_2 \in S \).

Examples.

1. If \(g \in G \) has order \(n \), then \(\langle g \rangle = \{ e, g, g^2, \ldots, g^{n-1} \} \).

2. Let \(G = GL_3(\mathbb{R}) \) and

\[
A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.
\]

The matrix \(A \) has order 3 because \(A^3 = I_n, A^2 \neq I_n \) and \(A \neq I_n \). The matrix \(B \) has infinite order because \(B^m \neq I_n \) for any positive integer \(m \).

3. If \(g \in G \) has infinite order, then

\(\langle g \rangle = \{ e, g, g^{-1}, g^2, g^{-2}, g^3, g^{-3}, \ldots, g^j, g^{-j}, \ldots \} \).

4. If \(G = \mathbb{Z} \), with group operation given by addition of integers, \(\langle 1 \rangle = \mathbb{Z} \), so \(\mathbb{Z} \) is an infinite cyclic group.

Lemma. Suppose that \(G \) is a group and \(g \in G \).

1. If \(n \) is a positive integer such that \(g^n = e \), then the order of \(g \) divides \(n \).
2. Suppose that the order of \(g \) is equal to \(n \). If \(m \geq 1 \), let \(\gcd(m, n) \) be the largest positive integer that divides both \(m \) and \(n \). Then the order of \(g^m \) is equal to \(n/\gcd(m, n) \).
Lemma. Suppose that G and G' are groups and $\varphi : G \to G'$ is a homomorphism.

1. If G is abelian, then $\varphi(G)$ is abelian.
2. If G is nonabelian and $\varphi(G)$ is abelian, then φ is not one-to-one.
3. If $S = \{ g_1, \ldots, g_k \}$ is a set of generators for the group G, then $\varphi(S)$ is a set of generators for $\varphi(G)$. Furthermore, $\varphi(G)$ is abelian if and only if $\varphi(g_i g_j) = \varphi(g_j g_i)$ whenever $1 \leq i, j \leq k$ and $i \neq j$.
4. If $g \in G$ has finite order n, then the order of $\varphi(g)$ divides n.

Definition. A map $\varphi : G \to G'$ is said to be an isomorphism (of groups) if φ is a homomorphism, φ is one-to-one, and φ is onto. In this case, we say that the groups G and G' are isomorphic.

Lemma. Let G and G' be groups. If $\varphi : G \to G'$ is an isomorphism, then the inverse function $\varphi^{-1} : G' \to G$ is an isomorphism of groups.

Examples: (details omitted)

1. If G is abelian and G' is nonabelian, then G and G' are not isomorphic.
2. Let V be an n-dimensional vector space over a field F. Then $GL(V)$ and $GL_n(F)$ are isomorphic groups. Let β be an ordered basis for V. Define $\varphi : GL(V) \to GL_n(F)$ by $\varphi(T) = [T]_\beta$. As explained in class, results from Mat 240 can be used to prove that φ is a homomorphism and φ is one-to-one and onto.
3. Let G be a group. Fix an element $g \in G$. Define $\varphi(x) = gxg^{-1}$, $x \in G$. Then φ is an isomorphism. Note that
 \[\varphi(xy) = g(xy)g^{-1} = gx(g^{-1}g)yg^{-1} = (gxg^{-1})(gyg^{-1}) = \varphi(x)\varphi(y), \quad x, y \in G. \]
 This shows that φ is a homomorphism. To see that φ is an isomorphism, show that $x \mapsto g^{-1}xg$ is the inverse function.

Lagrange’s Theorem. Let H be a subgroup of a finite group G. Then the order of H divides the order of G.

If $g \in G$ has finite order, then the order of the subgroup $\langle g \rangle$ is equal to the order of the element g.

Corollary. If G is a group of finite order and $g \in G$, then the order of g divides the order of G.

Lemma. Let $T \in L(\mathbb{R}^3)$. Make \mathbb{R}^3 into an inner product space using the standard inner product. Assume that T is orthogonal. Let β be an orthonormal basis for \mathbb{R}^3. Let $A = [T]_\beta$.
 (Because β is orthonormal and T is orthogonal, we know that A is an orthogonal matrix: $AA^t = A^tA = I_3$.)

1. If $\det(A) = 1$, then 1 is an eigenvalue of T and T is a rotation.
2. If $\det(A) = -1$, then T is the composition of a rotation and a reflection.
Dihedral groups

For each integer $n \geq 3$, let D_n be the set of symmetries of a regular n-gon. A symmetry is obtained by taking a copy of the n-gon and then placing the copy back on the original n-gon so that it exactly covers it. We can describe the symmetries by first choosing a labelling of the n-vertices. We label the vertices consecutively from 1 to n, moving counterclockwise at the numbers increase. Each symmetry is determined uniquely by where it sends the vertices. For example, if r is a rotation $2\pi/n$ radians clockwise about the centre of the n-gon, then r moves vertex i to the place where vertex $i+1$ was located before the n-gon was moved. For convenience, we place the n-gon in \mathbb{R}^2 so that the centre lies at the origin and reflection about the x-axis belongs to D_n. We denote this reflection by s. Relative to the standard basis $\beta = \{e_1, e_2\}$ for \mathbb{R}^2, $[s]_\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. (Note that if we identify \mathbb{R}^2 with the subspace $\text{Span}\{e_1, e_2\}$ of \mathbb{R}^3, we find that s is the restriction to $\text{Span}\{e_1, e_2\}$ of the rotation of \mathbb{R}^3 about the axis $\text{Span}\{e_1\}$—this rotation has matrix $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ relative to the basis $\{e_1, e_2, e_3\}$. This is an example of rotation of \mathbb{R}^3 that becomes a reflection upon restriction to a particular 2-dimensional invariant subspace.) We make D_n into a group by defining xy for $x, y \in D_n$ to be the symmetry obtained by first applying y and then applying x to the n-gon. The subgroup $\langle r \rangle = \{e, r, \ldots, r^{n-1}\}$ has order n, and r^j is rotation counterclockwise about the centre through $2\pi j/n$ radians. The other elements in D_n consist of reflections about axes of symmetry of the n-gon. If n is even, there are $n/2$ axes of symmetry that pass through opposite vertices and $n/2$ axes of symmetry that perpendicularly bisect two opposite sides of the n-gon, giving a total of n reflections. If n is odd, each axis of symmetry passes through a vertex and the midpoint of the opposite side, giving a total of n reflections. Thus D_n has order $2n$. The following are some basic properties of D_n:

- $e, r, r^2, \ldots, r^{n-1}$ are distinct and $r^n = e$.
- $r^j s$ has order 2 for $1 \leq j \leq n$.
- $r s = s r^{-1}$. (Note that, since $r \neq r^{-1}$, this implies that D_n is nonabelian.)
- $D_n = \langle r, s \rangle = \{e, r, \ldots, r^{n-1}, s, r s, r^2 s, \ldots, r^{n-1} s\}$.

Lemma. If G is a group and $\varphi : D_n \rightarrow G$ is a function, then φ is a homomorphism if $\varphi(r)^n = \varphi(s)^2 = e_G$, $\varphi(r^j) = (\varphi(r))^j$, and $\varphi(r s) = \varphi(r^j) \varphi(s) = \varphi(s) \varphi(r)^{-1} = \varphi(sr^{-j})$ for $1 \leq j \leq n - 1$.

5