1- Answer by TRUE or FALSE the following:

1. If \(f \) is an expanding map, then it implies that it is chaotic.
 True False

2. If \(f \) is expanding then it is expansive.
 True False

3. If \(f \) is expanding and the derivative is continuous then it is expansive.
 True False

4. Let \(f \) be a continuous function. If the periodic points are dense then the function is expansive.
 True False

5. If \(f \) is continuous and has a periodic point of period three then it is not one to one.
 True False

6. If \(f \) has a periodic point of period three then is not one to one.
 True False

7. Let \(f : I \to I \) be an injective (one to one) continuous increasing function then it has a fixed point.
 True False

2- Prove the following:

1. If \(f \) has an attracting periodic point then the periodic points are not dense.

2. If \(f \) has an attracting periodic point then \(f \) is not expansive.

3. Then map \(f(x) = 4x(1 - x) \) is not expansive.

4. Let \(f : \mathbb{R} \to \mathbb{R} \) be an injective (one to one) continuous function then it is not chaotic. Does it have fixed points? If it is decreasing?

5. Let \(f \) be a derivable function. If \(p \) is a fixed point of \(f \) such that it attracts from one side and repells from the other side. Then \(p \) is neutral fixed point \((|f'(p)| = 1)).

3- Let \(F(x) = 4x(1 - x) \).

1. Sketch the graph and find the fixed points. Are attracting or repelling? Justify.

2. Does it have periodic point of arbitrarily large period? Justify.

3. Is \(F \) restricted to the interval \([0, 1]\) expansive? Justify.
4. Find the set \(\{ x : F^n(x) \rightarrow +\infty \} \).

5. Find the set \(\{ x : F^n(x) \rightarrow -\infty \} \).

3- Let \(F(x) = 10x(1 - x) \).

1. Sketch the graph and find the fixed points. Are attracting or repelling? Justify.

2. Does it have periodic point of arbitrarily large period? Justify.

3. Find the set \(\{ x : F^n(x) \rightarrow +\infty \} \).

4. Find the set \(\{ x : F^n(x) \rightarrow -\infty \} \).

4- Let \(L : [0, 3] \rightarrow [0, 3] \) be the function.

\[
L(x) = \begin{cases}
2x + x^3 & 0 \leq x \leq 1 \\
\frac{3}{2}x - \frac{3}{2} & 1 < x \leq 3
\end{cases}
\]

1. Try to sketch the graph and find the fixed points. Are attracting or repelling? Justify.

2. How does the graph of \(L^n \) look for any positive integer \(n \)?

3. How many periodic points of period \(n \) does \(L \) have?

4. How many periodic points of period 30 does \(L \) have? Justify.

5. Are the periodic point dense? Justify.

7. Explain how it is constructed a symbolic dynamic induced by \(L \). Show that \(L \) is conjugate to the symbolic dynamics.