What is it good for?

1. Cutting necks:

 \[2 \leadsto \] \hspace{1cm} \[+ \] \hspace{1cm} \[= \] \hspace{1cm} \[+ \]

2. Recovers the good old Khovanov theory,

 \[\mathcal{F}(\otimes) = \epsilon : \{ 1 \mapsto v_+ \} \]

 \[\mathcal{F}(\otimes) = \eta : \{ v_+ \mapsto 0 \}
 \]

 \[v_- \mapsto 1 \]

 \[\mathcal{F}(\otimes) = \Delta : \{ v_+ \mapsto v_+ \otimes v_- + v_- \otimes v_+ \} \]

 \[v_- \mapsto v_- \otimes v_+ + v_+ \otimes v_- \]

 \[\mathcal{F}(\otimes) = m : \{ v_+ \otimes v_- \mapsto v_- \}
 \]

 \[v_+ \otimes v_+ \mapsto v_+ \]

 \[v_- \otimes v_+ \mapsto v_- \]

 \[v_- \otimes v_- \mapsto 0 \]

3. Trivially extends to tangles.

4. Well suited to prove invariance for cobordisms.

5. Recovers Lee's theory,

 \[\Delta : \{ v_+ \mapsto v_+ \otimes v_- + v_- \otimes v_+ \} \]

 \[v_- \mapsto v_- \otimes v_+ + v_+ \otimes v_- \]

 \[\mathcal{F}(\otimes) = m : \{ v_+ \otimes v_- \mapsto v_- \}
 \]

 \[v_+ \otimes v_+ \mapsto v_+ \]

 \[v_- \otimes v_+ \mapsto v_- \]

 \[v_- \otimes v_- \mapsto 0 \]

6. Leads to a new theory (over \(\mathbb{Z}/2 \) and with \(\deg h = -2 \)),

 \[\Delta : \{ v_+ \mapsto v_+ \otimes v_- + v_- \otimes v_+ + hv_+ \otimes v_+ \} \]

 \[v_- \mapsto v_- \otimes v_+ + v_+ \otimes v_- + hv_- \]

 \[\mathcal{F}(\otimes) = m : \{ v_+ \otimes v_- \mapsto v_- \}
 \]

 \[v_+ \otimes v_+ \mapsto v_+ \]

 \[v_- \otimes v_+ \mapsto v_- \]

 \[v_- \otimes v_- \mapsto 0 \]

7. Trivially extends to knots on surfaces.

8. Non-trivially recovers Khovanov's \(c \),

 \[\epsilon : \{ 1 \mapsto v_+ \} \]

 \[\eta : \{ v_+ \mapsto 0 \}
 \]

 \[v_- \mapsto -c \]

 \[\Delta : \{ v_+ \mapsto v_+ \otimes v_- + v_- \otimes v_+ + cv_- \otimes v_- \} \]

 \[v_- \mapsto v_- \otimes v_+ + cv_+ \otimes v_- \]

 \[\mathcal{F}(\otimes) = m : \{ v_+ \otimes v_- \mapsto v_- \}
 \]

 \[v_+ \otimes v_+ \mapsto v_+ \]

 \[v_- \otimes v_+ \mapsto v_- \]

 \[v_- \otimes v_- \mapsto 0 \]

(Added June 29, 2004: what appeared to work didn’t quite. The recovery of Khovanov’s \(c \) remains open).

"God created the knots, all else in topology is the work of man."

Leopold Kronecker (modified)

URL: http://www.math.toronto.edu/~drorbn/papers/Cobordism (and see the ‘‘GWU’’ handout)