Homework Assignment 8

Assigned Tuesday October 29; due Friday November 8, 2PM at SS 1071

web version: http://www.math.toronto.edu/~drorbn/classes/0203/157AnalysisI/HW08/HW08.html

Required reading
All of Spivak Chapter 9.

To be handed in
From Spivak Chapter 9: 1, 9, 15, 23.

Recommended for extra practice
From Spivak Chapter 9: 8, 11, 21, 28.

Also, let \(p(x) \) be the polynomial \(x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \). Now that we know that for \(|x| > 2n \max(|a_{n-1}|, \ldots, |a_1|, |a_0|, 1) \) we have that
\[
\frac{1}{2}|x^n| > |a_{n-1}x^{n-1} + \cdots + a_1x + a_0|,
\]
complete the proof of the following

Theorem.

- If \(n \) is odd then the equation \(p(x) = c \) has a root for any value of \(c \).

- If \(n \) is even then there is some constant \(c_0 \) so that the equation \(p(x) = c \) has no roots for \(c < c_0 \), has at least one root for \(c = c_0 \) and at least two roots for \(c > c_0 \).

Just for fun

Write a computer program that will allow you to draw the graph of the function
\[
f(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} \sin 3^n x,
\]
and will allow you to zoom on that graph through various small “windows”. Use your program to convince yourself that \(f \) is everywhere continuous but nowhere differentiable. The best plots will be posted on this web site! (Send pictures along with window coordinates by email to drorbn@math.toronto.edu).