1 Differentiability

⋆1. Compute the partial derivatives \(\partial_i f, \) and the derivative \(Df \) (in matrix form) for each of the following functions \(f : \mathbb{R}^n \to \mathbb{R}^k \):

(a) \(f(x, y, z) = x^y \)
(b) \(f(x, y) = x^y \)
(c) \(f(x, y, z) = (x^y, z) \)
(d) \(f(x, y) = \sin(x \sin(y)) \)
(e) \(f(x, y, z) = (x + y)^2 \)
(f) \(f(x, y, z) = (\log(x^2 + y^2 + z^2), xyz) \)
(g) \(f(x, y) = \sin(xy) \)

⋆2. Let \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) be the map \(f(x, y) = (x^2 - y^2, 2xy) \).

(a) Calculate \(Df \) and \(\det Df \)

⋆3. Suppose that \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) is a function such that \(f(0, 0, 0) = (1, 2) \) and:

\[
Df_{(0,0,0)} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \end{pmatrix}
\]

Let \(g : \mathbb{R}^2 \to \mathbb{R}^2 \) be the map \(g(x, y) = (x + 2y + 1, 3xy) \). Find \(D(f \circ g)_{(0,0,0)} \)

⋆4. Find an equation for the tangent plane \(T_pS \) to the following surfaces at the indicated point:

(a) \(S = \{(x, y, z) \mid x^2 + 2y^2 + 3z^2 = 6\} \) at \((1,1,-1)\).
(b) \(S = \{(x, y, z) \mid xyz^2 - \log(z - 1) = 8\} \) at \((-2,-1,2)\).
(c) \(S = \{(x, y, z) \mid x^2 + y^2 = 1\} \) at \((1/\sqrt{2}, 1/\sqrt{2}, 1)\)

⋆5. Suppose that \(f(x, y, z, t), x(t), y(x, t, s), \) and \(z(y, x) \). Use the chain rule to find an expression for \(\frac{\partial f}{\partial t} \) and \(\frac{\partial f}{\partial s} \).

⋆⋆6. Show that \(f : \mathbb{R}^2 \to \mathbb{R}, f(x, y) = \sqrt{|xy|} \) is not differentiable at \((x, y) = (0,0)\).

⋆⋆7. Let \(f, g : \mathbb{R}^n \to \mathbb{R}^m \). If \(f \) and \(g \) are differentiable at \(x \in \mathbb{R}^n \), then \(D(f + g) = Df_x + Dg_x \) and \(D(fg)_x = f(x)Dg_x + g(x)Df_x \). Notice these are generalizations of the sum and product rules for differentiation from last year. (Hint: Notice that the maps \((x, y) \to x + y \) and \((x, y) \to xy \) are themselves differentiable maps)

⋆⋆8. If \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable and \(\nabla f(x) = 0 \) for all \(x \), then \(f \) is constant.