1. Evaluate via residues
\[\int_{0}^{\infty} \frac{x^{a-1}}{1 + x} \, dx \]
where \(0 < a < 1 \).

2. Suppose that \(\Omega \) is a domain in \(\mathbb{C} \), \(f_k \) is a sequence of analytic functions on \(\Omega \), \(f_k \to f \) uniformly on compact subsets of \(\Omega \), and \(f \) has a zero of order \(N \) at \(z_0 \in \Omega \). Show that there exists \(\rho > 0 \) such that for \(k \) sufficiently large, \(f_k \) has exactly \(N \) zeros counting multiplicities on \(|z - z_0| < \rho \).

3. a) Let \(f \) and \(g \) be \(1-1 \) analytic mappings from a domain \(\Omega \subset \mathbb{C} \) onto the unit open disc \(\Delta \subset \mathbb{C} \). Suppose that for some point \(z_0 \in \Omega \), \(f(z_0) = g(z_0) = 0 \). What is the relation between \(f \) and \(g \)?

b) Let \(f \) be a \(1-1 \) analytic map of the unit disc \(\Delta \) onto the unit square with centre 0, satisfying \(f(0) = 0 \). Show that \(f(iz) = if(z) \).