1. Let X be a normed vector space.
 (a) Find the Legendre transform of $\phi(x) = \|x\|$.
 (b) If $C \subset X$ is open, convex, and contains the origin, find the Legendre transform of its Minkowski functional

 $p(x) = \inf\{t > 0 \mid t^{-1}x \in C\}$.

 (Is it clear that p is convex, lower semicontinuous, and proper?)

2. (Folland 6.16)
 If $0 < p < 1$, show that the formula $\rho(f, g) = \int |f - g|^p$ defines a metric on L^p that makes L^p into a complete topological vector space. (You need to verify the triangle inequality, the continuity of translation and dilation, and completeness.)

3. (Folland 5.63)
 Let X be a normed vector space. We say that a sequence $(x_n)_{n \geq 1}$ converges weakly to a limit a in X (and write $x_n \rightharpoonup a$), if

 \[\lim_{n \to \infty} \phi(x_n) = \phi(a) \]

 for all $\phi \in X^*$.

 Let H be an infinite-dimensional Hilbert space. In that case, $x_n \rightharpoonup a$ means that

 \[\lim_{n \to \infty} \langle x_n, v \rangle = \langle a, v \rangle \]

 for all $v \in H$. Prove that ...

 (a) ... every orthonormal sequence in H converges weakly to zero;

 (b) ... the unit sphere $S = \{x \in H : \|x\| = 1\}$ is weakly dense in the closed unit ball $B = \{x \in H : \|x\| \leq 1\}$, i.e, every $x \in B$ is the weak limit of a sequence of unit vectors.
4. (a) Solve the heat equation

\[\partial_t u = \Delta u, \quad (x \in \mathbb{R}^n, t > 0) \]

with initial values

\[u(x, 0) = f(x), \quad (x \in \mathbb{R}^n) \]

by deriving a differential equation for the Fourier transform \(\hat{u}(k,t) = \int e^{-2\pi ik \cdot x} u(x,t) \, dx \).

Here, \(\Delta u = \sum_j \partial^2_{x_j} u \) is the Laplacian, and \(f \) lies in the Schwartz space \(\mathcal{S} \).

Don’t forget to transform back ...

(b) You have obtained a formula

\[u(x,t) = \int_{\mathbb{R}^n} K_t(x,y)f(y) \, dy. \]

Given an integrable function \(f \) on \(\mathbb{R}^d \), prove that this integral defines a function \(u \) that is smooth for \(t > 0 \) and satisfies the heat equation. Moreover, \(u(\cdot, t) \) converges to \(f \) in \(L^1 \).

(c) Prove that \(\lim_{t \to 0} u(x,t) = f(x) \) for every \(x \in \mathbb{R}^d \) where \(f \) is continuous.

Remark: In fact, \(u(x,t) \to f(x) \) for all \(x \) in the Lebesgue set of \(f \).

(You are not asked to prove this.)