1. **Hilbert-Schmidt operators**
 Let $K(x, y)$ be a complex-valued function in $L^2(\mathbb{R}^2)$, and set

 $$Tf(x) = \int_{\mathbb{R}} K(x, y) f(y) \, dy.$$

 (a) Show that $f \mapsto Tf$ defines a bounded linear operator on $L^2(\mathbb{R})$.
 (b) Find a formula for its adjoint, T^*.

2. **Local properties of convex functions (Folland 3.42abc)**
 Let F be a convex function on an interval (a, b), i.e.,

 $$F\left((1 - \lambda)x + \lambda y \right) \leq (1 - \lambda)F(x) + \lambda F(y)$$

 for all $x, y \in (a, b)$ and all $\lambda \in (0, 1)$.
 (a) Prove that F is absolutely continuous on compact subintervals, and that F' is increasing.
 Hint: Argue that the difference quotient

 $$Q(x, y) = \frac{F(y) - F(x)}{y - x}, \quad (x < y)$$

 is increasing in both x and y, and consider the one-sided derivatives $D_+ F$ and $D_- F$.
 (b) Conclude that for every a there exists a constant β such that

 $$F(x) \geq F(a) + \beta (x - a) \quad \text{for all } x \in \mathbb{R}.$$

 Remark: The line $\ell(x) = F(a) + \beta (x - a)$ is called a *support line* for F at a. How does β relate to $D_\pm F(a)$?
3. (a) Jensen’s inequality (Folland 3.42d)
 Let \(\mu \) be a probability measure on \(X \), and let \(F \) be a convex function. Then, for every integrable function \(f \) on \(X \),
 \[
 F \left(\int f \, d\mu \right) \leq \int (F \circ f) \, d\mu .
 \]
 (In particular, the right hand side is well-defined, though it may take the value \(+\infty \).)

 \textit{Hint:} Consider the support line of \(F \) at \(\bar{f} = \int f \, d\mu \).

(b) Hölder’s inequality
 Let \(f \in L^p(d\mu) \) and \(g \in L^q(d\mu) \), where \(\mu \) is an arbitrary measure and \(1 < p, q < \infty \) with \(\frac{1}{p} + \frac{1}{q} = 1 \). Use Jensen’s inequality to prove that their product \(fg \) is integrable, and
 \[
 \left| \int fg \right| \leq ||f||_p \cdot ||g||_q .
 \]

 \textit{Hint:} Consider the measure \(|g(x)|^q \, d\mu \), suitably normalized.

4. Fix \(p \in [1, \infty) \), and let \(f \) be a nonnegative \(p \)-integrable function on \(\mathbb{R}^n \).
 (a) Show that
 \[
 ||f||_p^p = \int_0^\infty \mu(\{x : f(x) > t\}) pt^{p-1} \, dt .
 \]

 (b) The \textit{symmetric decreasing rearrangement} of \(f \) is defined by
 \[
 f^*(x) = \int_0^\infty \chi_{|x|<r(t)} \, dt ,
 \]
 where \(r(t) \) is the radius of a ball that has the same measure as the level set \(\{x : f(x) > t\} \).
 Show that \(||f^*||_p = ||f||_p \).