MAT 1001 / 458 : Real Analysis II
Assignment 4, due February 5, 2014

1. **Convolution operators on \(L^2([0, 2\pi]) \)**

 Let \(\mathcal{H} \) be the Hilbert space of \(2\pi \)-periodic square integrable functions (with the usual identification of functions that agree a.e.) and with inner product \(\langle f, g \rangle = \int_0^{2\pi} f(x) \bar{g}(x) \, dx \). Fix a function \(h \in \mathcal{H} \), and consider the linear operator \(T : f \mapsto f * h \).

 (a) Verify that the functions \(u_n(x) = e^{inx}, \quad n \in \mathbb{Z} \) are eigenfunctions for \(T \). What are the corresponding eigenvalues \(\lambda_n \)?

 (b) Show that \(T \) is compact. Under what conditions on \(h \) is it self-adjoint?

2. **(Stein & Shakarchi, Exercise 4.32)**

 Prove that the operator \(T : L^2([0, 1]) \to L^2([0, 1]) \) defined by \((Tf)(x) = xf(x)\) is bounded and self-adjoint, but not compact. Moreover, \(T \) has no eigenvectors.

3. **Von Neumann’s alternating projection theorem**

 Let \(P_1 \) and \(P_2 \) be orthogonal projections onto closed subspaces \(V_1 \) and \(V_2 \) of a Hilbert space \(\mathcal{H} \), respectively, and let \(P \) be the orthogonal projection onto the intersection \(V = V_1 \cap V_2 \). Convince yourself that \(P_1 P_2 x = x \), if and only if \(x \in V \) (and the same holds for \(P_2 P_1 \)).

 You will show that \((P_1 P_2)^n x\) converges to \(Px \) for all \(x \in \mathcal{H} \). (Please make a sketch!)

 (a) Prove that \(\| x - P_1 P_2 x \|^2 \leq 2(\| x \|^2 - \| P_1 P_2 x \|^2) \) for all \(x \in \mathcal{H} \).

 (b) **Kakutani’s lemma**

 Given \(x \), set \(x_n = (P_1 P_2)^n x \), so that \(x_{n+1} = P_1 P_2 x_n \). Then \(\lim \| x_n - x_{n+1} \| = 0 \).

 (c) Conclude that \(\lim \| x_n - P x \| = 0 \). (Hint: Apply Problem 4.2(a) to \(R(I - P_1 P_2) \).)

4. **(Folland 6.6)**

 Let \((X, \mu)\) be a measure space. If \(f \) is a measurable complex-valued function on \(X \), set

 \[
 \|f\|_p := \begin{cases}
 \left(\int |f|^p \, d\mu \right)^{1/p}, & 1 \leq p < \infty, \\
 \inf \{t > 0 \mid f(x) \leq t \text{ a.e.} \}, & p = \infty.
 \end{cases}
 \]

 Let \(L^p(X, d\mu) \) denote the space of functions with \(\|f\|_p < \infty \) (identifying functions that agree a.e.). We will show next week that \(L^p(X, d\mu) \) is a Banach space with norm \(\| \cdot \|_p \).

 Suppose \(0 < p_0 < p_1 \leq \infty \). Find examples of functions on \(\mathbb{R}^+ \) (with Lebesgue measure) such that \(f \in L^p \) if and only if...

 (a) \(p_0 < p < p_1 \);

 (b) \(p_0 \leq p \leq p_1 \);

 (c) \(p = p_0 \).

 Hint: Try functions of the form \(f(x) = x^{-\alpha} |\log x|^\beta \).