1. **Polarization identity (Folland 5.55)**
 (a) Show that for every \(x, y \in \mathcal{H} \),
 \[
 \langle x, y \rangle = \frac{1}{4} \left(\|x+y\|^2 - \|x-y\|^2 + i\|x+iy\|^2 - i\|x-iy\|^2 \right).
 \]
 (Remark: Completeness is not needed here.)
 (b) If a linear map \(L : \mathcal{H}_1 \to \mathcal{H}_2 \) between two Hilbert spaces is isometric and surjective, then it is **unitary**, i.e., \(L \) is invertible and \(\langle Lx, Ly \rangle = \langle x, y \rangle \) for all \(x, y \in \mathcal{H}_1 \).

2. **Orthogonal polynomials**
 (a) Let \(\mu \) be a measure on an interval such that \(L^2(d\mu) \) is infinite-dimensional and contains the space of polynomials as a dense subspace. Describe how to construct an orthogonal basis \((p_n)_{n \geq 0} \) for \(L^2(d\mu) \) where each \(p_n \) is a polynomial of degree exactly \(n \).
 (b) **Three-term recurrence relation**
 Show that there exist real-valued sequences \((a_n), (b_n), (c_n) \) such that
 \[
 p_{n+1} = (a_n x + b_n) p_n + c_n p_{n-1} \quad \text{for} \quad n \geq 1.
 \]
 Hint: Argue that that \(\langle xp_n, p_m \rangle = 0 \) if \(m + 1 < n \).

3. **Example of a non-separable Hilbert space (Stein & Shakarchi, Problem 4.2)**
 Consider the collection of exponential functions \(f_\lambda(x) = e^{i\lambda x} \) on the real line, where \(\lambda \) ranges over \(\mathbb{R} \). Let \(\mathcal{H}_0 \) denote the space of finite linear combinations of these exponentials. For \(f, g \in \mathcal{H}_0 \), define an inner product by
 \[
 \langle f, g \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(x)\bar{g}(x) \, dx.
 \]
 (a) Show that this limit exists, and compute its value for \(f = \sum_{j=1}^{n} \alpha_j f_{\lambda_j}, \ g = \sum_{k=1}^{m} \beta_k f_{\mu_k} \).
 (b) Show that the corresponding norm, given by \(\|f\| = \sqrt{\langle f, f \rangle} \), satisfies
 \[
 \|f\| \leq \sup_{x} |f(x)|.
 \]
 (c) Let \(\mathcal{H} \) be the completion of \(\mathcal{H}_0 \) with respect to \(\| \cdot \| \). Prove that \(\mathcal{H} \) is not separable.
 Hint: The functions \(\{f_\lambda\}_{\lambda \in \mathbb{R}} \) are orthonormal.
4. A Banach space does not have a countably infinite Hamel basis

Let X be an infinite-dimensional Banach space.

(a) If $V \subset X$ is a finite-dimensional subspace, show that V is closed.
(b) Let $B \subset X$ be a maximal set of linearly independent vectors. Prove that B is uncountable.

Remark: It is a theorem of Linear Algebra that B spans X. More precisely, every element $x \in X$ can be uniquely represented as a finite linear combination

$$x = \sum_{j=1}^{n} \alpha_j b_j$$

for some nonnegative integer n, non-zero vectors $b_1, \ldots, b_n \in B$, and non-zero coefficients $\alpha_1, \ldots, \alpha_n$. Such a set is called a (Hamel) basis. The existence of a basis is guaranteed by Zorn’s lemma.