MAT 1001 / 458 : Real Analysis II
Assignment 2, due January 23, 2013

1. (Operator norms for matrices)
 Let \(M \) be a \(n \times m \) matrix, and let \(L : \mathbb{R}^m \rightarrow \mathbb{R}^n \) be the linear transformation given by \(L(x) = Mx \). Compute the operator norm of \(L \), if both spaces are equipped with the \(\ell^p \)-norm, for \(p = 1, p = 2 \), and \(p = \infty \). (Use the same \(p \) for both spaces.)

2. (Folland 6.12)
 Prove that \(L^p(\mathbb{R}^n) \) is separable for \(1 \leq p < \infty \) but not for \(p = \infty \).

3. (Folland 6.16)
 If \(0 < p < 1 \), show that the formula \(\rho(f, g) = \int |f - g|^p \) defines a metric on \(L^p \) that makes \(L^p \) into a complete topological vector space. (You need to verify the triangle inequality, the continuity of translation and dilation, and completeness.)

4. (Heat kernel estimates)
 For \(t > 0 \) and \(x, y \in \mathbb{R}^n \), let \(K(t; x, y) = (4\pi t)^{-n/2}e^{-\frac{|x-y|^2}{4t}} \).
 (a) Given \(f \in L^1(\mathbb{R}^n) \), show that
 \[
 u(t, x) = \int_{\mathbb{R}^n} f(y) K(t; x, y) \, dy
 \]
solves the heat equation \(\partial_t u = \Delta u \) for \(t > 0 \). Here, the Laplacian operator \(\Delta \) is defined by \(\Delta u = \sum (\partial_{x_i})^2 u \).
 (b) Furthermore, \(\lim_{t \to 0^+} u(x, t) = f(x) \) for almost every \(x \in \mathbb{R}^n \).
 (c) Prove that \(u(t, \cdot) \in L^p(\mathbb{R}^n) \) for every \(p \in [1, \infty] \) and give a bound on its norm. (Hint: Interpolation.)
 (d) For which values of \(p \) is \(u \in L^p((0, T) \times \mathbb{R}^n) \)?