MAT 257Y Solutions to Practice Term Test 1

(1) Find the partial derivatives of the following functions
(a) \(f(x, y, z) = \sin(x \sin(y \sin z)) \)
(b) \(f(x, y, z) = x^y z^2 \)

Solution
(a) \(\frac{\partial f}{\partial x}(x, y, z) = (\cos(x \sin(y \sin z))) (\sin(y \sin z)) \)
\(\frac{\partial f}{\partial y}(x, y, z) = (\cos(x \sin(y \sin z))) (x \cos(y \sin z)) \sin z \)
\(\frac{\partial f}{\partial z}(x, y, z) = (\cos(x \sin(y \sin z))) (x \cos(y \sin z)) y \cos z \)
(b) First, we rewrite \(f(x, y, z) \) as \(f(x, y, z) = (e^{\ln x})^y z^2 = e^{(\ln x)y z^2} \)
\(\frac{\partial f}{\partial x}(x, y, z) = (e^{(\ln x)y z^2}) \frac{y z^2}{x} = (x y z^2) \frac{y z^2}{x} \)
\(\frac{\partial f}{\partial y}(x, y, z) = (e^{(\ln x)y z^2}) (\ln x) z^2 = (x y z^2) (\ln x) z^2 \)
\(\frac{\partial f}{\partial z}(x, y, z) = (e^{(\ln x)y z^2}) (\ln x) y(2z) = (x y z^2) (\ln x) y(2z) \)

(2) give an example of a nonempty set \(A \) such that the set of limit points of \(A \) is the same as the set of boundary points of \(A \).

Solution
Let \(A = S^1 = \{x \in \mathbb{R}^2 | |x| = 1 \} \). Then \(A = \text{Lim} A = \text{br}(A) \).

(3) Let \(A, B \subset \mathbb{R}^n \) be compact.
Prove that the set \(A + B = \{a + b | a \in A, b \in B \} \) is compact.

Solution
Consider the map \(f: \mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) given by \(f(x, y) = x + y \). This map is linear and hence continuous. By construction, \(A + B = f(A \times B) \). \(A \times B \) is compact as a product of two compact sets and hence \(A + B = f(A \times B) \) is also compact as an image of a compact set under a continuous map.
(4) show that the intersection of arbitrary collection of closed sets is closed.

Solution

Let \(\{A_\alpha\}_{\alpha \in I} \) be a collection of closed sets in \(\mathbb{R}^n \).
Let \(U_\alpha = \mathbb{R}^n \setminus A_\alpha \). Then \(U_\alpha \) is open.

We have

\[
\mathbb{R}^n \setminus \bigcap_\alpha A_\alpha = \bigcup_\alpha U_\alpha
\]

is open as a union of open sets. Hence \(\bigcap_\alpha A_\alpha \) is closed.

(5) show that \(f: \mathbb{R}^n \to \mathbb{R}^m \) is continuous if and only if \(f^{-1}(A) \) is closed for any closed \(A \subset \mathbb{R}^m \).

Solution

Let \(f \) be continuous.

Suppose \(A \subset \mathbb{R}^m \) is closed. Then \(\mathbb{R}^m \setminus A \) is open.
By continuity of \(f \) this implies that \(f^{-1}(\mathbb{R}^m \setminus A) \) is open. It’s easy to see that \(f^{-1}(\mathbb{R}^m \setminus A) = \mathbb{R}^n \setminus f^{-1}(A) \).

hence \(f^{-1}(A) \) is closed. The reverse implication is proved similarly.

(6) Let \(\mathbb{R}^{n^2} \) be the space of all \(n \times n \) matrices. Consider the map \(f: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2} \) given by the formula

\[
f(A) = A \cdot A^T.
\]

Here \(A^T \) means the transpose of \(A \).

Show that \(f \) is differentiable everywhere and compute \(df(A) \).

\textit{Hint:} use that \(df(A)(X) = D_X f(A) \).

Solution

First observe that \(f \) is clearly differentiable because its components are polynomials in entries of \(A \). to compute \(df(A) \) we use the fact that for differentiable maps \(df(A)(X) = D_X f(A) \).

By definition
\[D_x f(A) = \lim_{t \to 0} \frac{f(A + tX) - f(A)}{t} = \lim_{t \to 0} \frac{(A + tX)(A + tX)^T - AA^T}{t} \]

\[= \lim_{t \to 0} \frac{AA^T + tX A^T + tA X^T + t^2XX^T - AA^T}{t} = X A^T + AX^T \]

Therefore \(df(A)(X) = X A^T + AX^T \).

(7) Let \(f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2 \) be given by the formula
\[
 f_1(x, y) = x + y + y^3 + 1, \quad f_2(x, y) = x e^y + 2
\]
Show that there exists an open set \(U \) containing \((0, 0)\) such that \(f : U \to f(U) \) is a bijection and \(f^{-1} \) is differentiable on \(f(U) \) and compute \(df^{-1}(1, 2) \).

Solution

Clearly \(f \) is differentiable everywhere. we compute
\[
 \frac{\partial f_1}{\partial x}(x, y) = 1, \quad \frac{\partial f_1}{\partial y}(x, y) = 1 + 3y^2, \quad \frac{\partial f_2}{\partial x}(x, y) = e^y, \quad \frac{\partial f_2}{\partial y}(x, y) = xe^y
\]
Therefore

\[
 [df(0, 0)] = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}
\]

This matrix has \(\det = -1 \neq 0 \). \(f(0, 0) = (1, 2) \). hence, by the inverse function theorem, there exists an open set \(U \) containing \((0, 0)\) such that \(f : U \to f(U) \) is a bijection and \(f^{-1} \) is differentiable on \(f(U) \) and

\[[df^{-1}(1, 2)] = [df(0, 0)]^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \]

(8) Let \(f(x, y) = x^y \) be defined on \(U = \{(x, y) | x > 0\} \).
Verify that
\[
 \frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y)
\]

Solution
First we rewrite \(f(x, y) = e^{(\ln x)y} \). we compute
\[
\frac{\partial f}{\partial x}(x, y) = e^{(\ln x)y} \frac{y}{x}, \quad \frac{\partial f}{\partial y}(x, y) = e^{(\ln x)y} \ln x. \]
Hence
\[
\frac{\partial^2 f}{\partial x \partial y}(x, y) = e^{(\ln x)y} \frac{y^2}{x} \ln x + e^{(\ln x)y} \frac{1}{x} \quad \text{and} \quad
\frac{\partial^2 f}{\partial y \partial x}(x, y) = e^{(\ln x)y} \ln x \frac{y}{x} + e^{(\ln x)y} \frac{1}{x}. \]
Thus
\[
\frac{\partial^2 f}{\partial x \partial y}(x, y) = \frac{\partial^2 f}{\partial y \partial x}(x, y) \]