Math 247S Practice Term Test Winter 2012

Rules: No books, no notes. You have 50 minutes to complete the test. Note: the actual test is shorter than the practice test.

(1) Let V be a complex vector space with two inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$.
 Suppose $\langle v, v \rangle_1 = \langle v, v \rangle_2$ for any $v \in V$.
 Prove that $\langle u, v \rangle_1 = \langle u, v \rangle_2$ for any $u, v \in V$.

(2) For which real values of a, b, c is the matrix the matrix
 \[
 A = \begin{pmatrix}
 a & b & -c \\
 -b & a & 0 \\
 ac & 0 & 1
 \end{pmatrix}
 \]
 invertible? Find the formula for A^{-1} for those values of (a, b, c) for which A^{-1} exists.

(3) Let $V = \mathbb{R}^\infty$ i.e., V is the space of infinite sequences of real numbers $a = (a_1, a_2, \ldots)$ where all but finitely many a_i are zero for every $a \in V$.
 Let $f: V \to \mathbb{R}$ be given by $f(a) = \sum_{i=1}^{\infty} a_i$.
 Is it true that there exists $v \in V$ such that $f(a) = \langle a, v \rangle$ for all $a \in V$? If yes, find v. If not, explain why not.

(4) Mark true or false. If true, give an argument why, if false, give a counterexample.
 a) Let V be a finite dimensional complex vector space with inner product and let $f: V \to \mathbb{C}$ be a linear map. Then there exists $v \in V$ such that $f(u) = \langle v, u \rangle$ for every $u \in V$.
 b) Similar matrices have equal determinants.
 c) Every orthonormal set of vectors is linearly independent;
 d) Let V be a finite-dimensional vector space with inner product. Then for any $S \subset V$ we have $(S^\perp)^\perp = S$
(5) Let $W = \{(x, y, z) \in \mathbb{R}^3 \text{ such that } x + 2y - z = 0\}$.
 a) Find an orthogonal basis of W;
 b) Find the orthogonal projection of $(1, 1, 2)$ to W.

(6) Let v_1, \ldots, v_n be vectors in \mathbb{R}^n. Let G be an $n \times n$ matrix with $G_{ij} = \langle v_i, v_j \rangle$. Let P be the parallelepiped spanned by v_1, \ldots, v_n.

 Prove that $\text{vol}(P) = \sqrt{\det G}$.

 Hint: Look at the matrix A with rows v_1, \ldots, v_n.