Solutions to Practice Final 3

1. The Fibonacci sequence is the sequence of numbers $F(1), F(2), \ldots$ defined by the following recurrence relations:
$F(1)=1, F(2)=1, F(n)=F(n-1)+F(n-2)$ for all $n>2$.
For example, the first few Fibonacci numbers are $1,1,2,3,5,8,13, \ldots$
(a) Prove by induction that for any $n \geq 1$ the consequtive Fibonacci numbers $F(n)$ and $F(n+1)$ are relatively prime.
(b) Prove by induction that for any $n \geq 1$ the following identity holds

$$
F(2)+F(4)+\ldots F(2 n)=F(2 n+1)-1
$$

Solution

(a) Since $F(1)=F(2)=1$ the statement is true for $n=1$.

Suppose we have proved that $\operatorname{gcd}(F(n), F(n+1))=1$ for some $n \geq 1$. Observe that for any integers a and b we have that $d \mid a$ and $d \mid b$ if and only if $d \mid a$ and $d \mid a+b$. Therefore, $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a+b)$.
Using the above observation we conclude $\operatorname{gcd}(F(n+1), F(n+2))=\operatorname{gcd}(F(n+$ 1), $F(n)+F(n+1))=\operatorname{gcd}(F(n+1), F(n))=1$ where the last equality holds by the induction assumption.
This proves the induction step and therefore $\operatorname{gcd}(F(n), F(n+1))=1$ for any $n \geq 1$.
(b) First we check that the formula holds for $n=1$:

$$
F(2)=1=2-1=F(3)-1
$$

Induction step. Suppose we've already proved that

$$
F(2)+F(4)+\ldots F(2 n)=F(2 n+1)-1
$$

for some $n \geq 1$. Then $F(2)+F(4)+\ldots F(2 n)+F(2 \cdot(n+1))=F(2 n+1)-1+F(2 n+2)=$ $F(2 n+3)-1=F(2(n+1)+1)-1$.
Therefore the formula holds for $n+1$. This proves the induction step and hence

$$
F(2)+F(4)+\ldots F(2 n)=F(2 n+1)-1
$$

for any $n \geq 1$.
2. (a) Find the remainder when $7^{3^{100}}$ is divided by 20 .

Solution

We find $\phi(20)=\phi\left(2^{2} \cdot 5\right)=\left(2^{2}-2^{1}\right) \cdot(5-1)=8$. Since $\operatorname{gcd}(7,20)=1$ this implies that $7^{8} \equiv 1(\bmod 20)$ by Euler's theorem. Thus we need to find $3^{100}(\bmod 8)$. We have $3^{2}=9 \equiv 1(\bmod 8)$. Therefore $3^{100}=\left(3^{2}\right)^{50} \equiv 1^{50} \equiv 1(\bmod 8)$, i.e. $3^{100}=8 k+1$ for some natural k. Hence $7^{3^{100}}=7^{8 k+1}=\left(7^{8}\right)^{k} \cdot 7 \equiv 1^{k} \cdot 7 \equiv 7$ $(\bmod 20)$.
Answer: $7^{3^{100}} \equiv 7(\bmod 20)$.
(b) Find $2^{p!}(\bmod p)$ where p is an odd prime.

Solution

By Fermat's theorem $2^{p-1} \equiv 1(\bmod p)$. Since $p-1$ divides p ! this implies that $2^{p!} \equiv 1(\bmod p)$ too.
Answer: $2^{p!} \equiv 1(\bmod p)$.
3. Prove that $q_{1} \sqrt{2}+q_{2} \sqrt{6}$ is irrational for any rational q_{1}, q_{2} unless $q_{1}=q_{2}=0$.

Solution

Suppose $x=q_{1} \sqrt{2}+q_{2} \sqrt{6}$ is rational and at least one of the numbers q_{1}, q_{2} is not zero. Case 1. $q_{1}=0, q_{2} \neq 0$. This means that $x=q_{2} \sqrt{6}$ is rational and hence $\sqrt{6}=\frac{x}{q_{2}}$ is rational too. This is false and therefore this case is impossible.
Case 2. $q_{1} \neq 0, q_{2}=0$. As above this means that $x=q_{1} \sqrt{2}$ is rational and hence $\sqrt{2}=\frac{x}{q_{1}}$ is also rational. This is known to be false and hence this case is impossible too.
Case 3. $q_{1} \neq 0, q_{2} \neq 0$. Squaring both sides of the formula $x=q_{1} \sqrt{2}+q_{2} \sqrt{6}$ we get $x^{2}=2 q_{1}^{2}+6 q_{2}^{2}+2 q_{1} q_{2} \sqrt{12}=2 q_{1}^{2}+6 q_{2}^{2}+4 q_{1} q_{2} \sqrt{3}$. Therefore $\sqrt{3}=\frac{x^{2}-2 q_{1}^{2}-6 q_{2}^{2}}{4 q_{1} q_{2}}$ is rational (note that the denominator in this fraction is not zero). This is a contradiction.
Thus, $q_{1} \sqrt{2}+q_{2} \sqrt{6}$ is irrational for any rational q_{1}, q_{2} unless $q_{1}=q_{2}=0$.
4. Suppose $(\phi(m), m)=1$. Here m is a natural number and ϕ is the Euler function.

Prove that \sqrt{m} is irrational.

Solution

Let $m=p_{1}^{k_{1}} \cdot \ldots \cdot p_{l}^{k_{l}}$ be the prime decomposition of m where p_{1}, \ldots, p_{l} are distinct primes. Then $\phi(m)=\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right) \cdot \ldots \cdot\left(p_{l}^{k_{l}}-p_{l}^{k_{l}-1}\right)$.
If some $k_{i}>1$ this formula implies that p_{i} divides $\phi(m)$ and hence $\operatorname{gcd}(\phi(m), m) \neq 1$. Thus, if $\operatorname{gcd}(\phi(m), m)=1$ then all k_{i} are equal to 1 . Therefore $m=p_{1} \cdot \ldots \cdot p_{k}$ is not a complete square and hence \sqrt{m} is irrational.
5. Let $p=11, q=5$ and $E=23$. Let $N=11 \cdot 5=55$. The receiver broadcasts the numbers $N=55, E=23$. The sender sends a secret message M to the receiver using RSA encryption. What is sent is the number $R=2$.
Decode the original message M.

Solution

First we compute $\phi(N)=(5-1) \cdot(11-1)=40$. Thus we need to find a decoder D such that $D E \equiv 1(\bmod 40)$ where $E=23$. We find D using the Euclidean algorithm.
$40=23 \cdot 1+17,17=40 \cdot 1-23 \cdot 1$,
$23=17 \cdot 1+6,6=23 \cdot 1-17 \cdot 1=23 \cdot 1-(40 \cdot 1-23 \cdot 1)=23 \cdot 2-40 \cdot 1$,
$17=6 \cdot 2+5,5=17 \cdot 1-6 \cdot 2=(40 \cdot 1-23 \cdot 1)-(23 \cdot 2-40 \cdot 1) \cdot 2=40 \cdot 3-23 \cdot 5$, $6=5 \cdot 1+1,1=6 \cdot 1-5 \cdot 1=(23 \cdot 2-40 \cdot 1)-(40 \cdot 3-23 \cdot 5)=23 \cdot 7-40 \cdot 4$.
Thus $23 \cdot 7 \equiv 1(\bmod 40)$ and we can take $D=7$.
Then $M=R^{D}(\bmod N)=2^{7}(\bmod 55)=128(\bmod 55) \equiv 18(\bmod 55)$.
Answer: $M=18$.
6. (a) Find all complex roots of the equation

$$
z^{6}+(1-i) z^{3}-i=0
$$

Solution

Put $y=z^{3}$. We first need to solve $y^{2}+(1-i) y-i=0$.
We have $y=\frac{-(1-i) \pm \sqrt{(1-i)^{2}+4 i}}{2}=\frac{-(1-i) \pm \sqrt{1^{2}+i^{2}-2 i-4 i}}{2}=\frac{-(1-i) \pm \sqrt{1^{2}+i^{2}+2 i}}{2}=\frac{-(1-i) \pm \sqrt{(1+i)^{2}}}{2}$ $=\frac{-(1-i) \pm(1+i)}{2}$ which gives $y_{1}=\frac{-(1-i)+(1+i)}{2}=i$ and $y_{2}=\frac{-(1-i)-(1+i)}{2}=-1$.
Next, we separately solve $z^{3}=i$ and $z^{3}=-1$.
From the first equation we get $z^{3}=i=1\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)$ and hence $z=$ $\sqrt[3]{1}\left(\left(\cos \frac{\frac{\pi}{2}+2 \pi k}{3}+i \sin \frac{\frac{\pi}{2}+2 \pi k}{3}\right)=\cos \left(\frac{\pi}{6}+\frac{2 \pi k}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{2 \pi k}{3}\right)\right.$ for $k=0,1,2$. Plugging in $k=0,1,2$ this gives
$z_{1}=\cos \left(\frac{\pi}{6}+0\right)+i \sin \left(\frac{\pi}{6}+0\right)=\frac{\sqrt{3}}{2}+\frac{i}{2}$,
$z_{2}=\cos \left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{2 \pi}{3}\right)=\cos \left(\frac{5 \pi}{6}\right)+i \sin \left(\frac{5 \pi}{6}\right)=-\frac{\sqrt{3}}{2}+\frac{i}{2}$,
$z_{3}=\cos \left(\frac{\pi}{6}+\frac{4 \pi}{3}\right)+i \sin \left(\frac{\pi}{6}+\frac{4 \pi}{3}\right)=\cos \left(\frac{3 \pi}{2}\right)+i \sin \left(\frac{3 \pi}{2}\right)=-i$.
Similarly, from the second equation we get
$z^{3}=-1=\cos \pi+i \sin \pi$ and hence $z=\cos \frac{\pi+2 \pi k}{3}+i \sin \frac{\pi+2 \pi k}{3}$ for $k=0,1,2$.
Plugging in $k=0,1,2$ this gives
$z_{4}=\cos \frac{\pi+0}{3}+i \sin \frac{\pi+0}{3}=\frac{\sqrt{3}}{2}+\frac{i}{2}$,
$z_{5}=\cos \frac{\pi+2 \pi}{3}+i \sin \frac{\pi+2 \pi}{3}=\cos \pi+i \sin \pi=-1$,
$z_{6}=\cos \frac{\pi+4 \pi}{3}+i \sin \frac{\pi+4 \pi}{3}=\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}=\cos \frac{-\pi}{3}+i \sin \frac{-\pi}{3}=\frac{\sqrt{3}}{2}-\frac{i}{2}$.
(b) Express as $a+b i$ for some real a, b :

$$
\frac{6^{100}}{(3+\sqrt{3} i)^{103}}
$$

Solution

First we compute $|3+\sqrt{3} i|=\sqrt{9+3}=\sqrt{12}=2 \sqrt{3}$. Therefore, we can rewrite $3+\sqrt{3} i=2 \sqrt{3}\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)=2 \sqrt{3}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$.
Thus,

$$
\begin{gathered}
\frac{6^{100}}{(3+\sqrt{3} i)^{103}}=\frac{6^{100}}{\left(2 \sqrt{3}\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right)^{103}}=\frac{6^{100}}{(2 \sqrt{3})^{103}} \cdot\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right)^{103} \\
=\frac{6^{100}}{(2 \sqrt{3})^{103}} \cdot\left(\cos \left(-\frac{103 \pi}{6}\right)+i \sin \left(-\frac{103 \pi}{6}\right)\right)=\frac{6^{100}}{(2 \sqrt{3})^{103}} \cdot(\cos (-17 \pi-\pi / 6)+i \sin (-17 \pi-\pi / 6)) \\
\quad=\frac{6^{100}}{(2 \sqrt{3})^{103}} \cdot(\cos (5 \pi / 6)+i \sin (5 \pi / 6))=\frac{6^{100}}{(2 \sqrt{3})^{103}} \cdot\left(-\frac{\sqrt{3}}{2}+\frac{i}{2}\right)
\end{gathered}
$$

7. A complex number is called algebraic if it is a root of a polynomial with integer coefficients.

Prove that the set of algebraic numbers is countable.

Solution

For a polynomial f let us denote by Z_{f} the set of roots of f. Then the set of algebraic numbers A is equal to $\bigcup_{f \in P} Z_{f}$ where P is the set of all nonzero polynomials. Since a nonzero polynomial of degree n has at most n roots we have that Z_{f} is finite (and hence countable) for every f. Since a union of countably many countable sets is countable it's therefore enough to prove that P is countable. We can write P as the union $P=\bigcup_{n \in N} P_{n}$ where P_{n} is the set of nonzero polynomials of degree n. A polynomial $f(x)$ of degree n is given by $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0}$. The correspondence $f \mapsto$ $\left(a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}\right)$ give an injective map $P_{n} \rightarrow Z^{n+1}$ and since $\left|Z^{n+1}\right|=\left|N^{n+1}\right|=|N|$ we conclude that P_{n} is countable. Therefore $P=\bigcup_{n \in N} P_{n}$ is also countable as a union of countably many countable sets and hence so is A.
8. Suppose $0<\alpha<\pi / 2$ satisfies $\cos \alpha=\frac{1}{6}$. Prove that the angle α can not be trisected with a ruler and a compass.

Solution

Recall that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$ for any θ.
Note that the angle α is constructible since $\cos \alpha=\frac{1}{6}$ is a constructible number.
Suppose α can be trisected. Then $x=\cos (\alpha / 3)$ is also constructible and satisfies $4 x^{3}-3 x=\frac{1}{6}$ or $8 x^{3}-6 x=\frac{1}{3},(2 x)^{3}-3 \cdot(2 x)=\frac{1}{3}$. If x is constructible then so is $y=2 x$ which satisfies $y^{3}-3 y=\frac{1}{3}, 3 y^{3}-9 y-1=0$. This is a cubic polynomial with rational coefficients. If it has a constructible root it also has a rational one. Suppose $\frac{p}{q}$ is a rational root where $\operatorname{gcd}(p, q)=1$. By the rational root theorem we must have that $p \mid-1$ and $q \mid 3$. Therefore, $p= \pm 1, q= \pm 1, \pm 3$ and $\frac{p}{q}= \pm 1, \pm \frac{1}{3}$. Plugging in these numbers into $3 y^{3}-9 y-1=0$ we get
$3 \cdot 1^{3}-9-1=-7 \neq 0,3 \cdot(-1)^{3}-9 \cdot(-1)-1=5 \neq 0,3 \cdot\left(\frac{1}{3}\right)^{3}-9 \cdot \frac{1}{3}-1=\frac{1}{9}-4 \neq 0$, $3 \cdot\left(-\frac{1}{3}\right)^{3}-9 \cdot\left(-\frac{1}{3}\right)-1=-\frac{1}{9}+2 \neq 0$.
Thus $3 y^{3}-9 y-1=0$ has no rational roots. This is a contradiction and hence α can not be trisected with a ruler and a compass.
9. Let S be that set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Prove that $|S|>|\mathbb{R}|$.

Solution

The set S contains the set $T=\{f: \mathbb{R} \rightarrow\{0,1\}\}$. Therefore $|S| \geq|T|$. However T is bijective to $P(\mathbb{R})$ which is the set of all subsets of \mathbb{R} and $|P(\mathbb{R})|>|\mathbb{R}|$ by Cantor's theorem.
Therefore $|S| \geq|T|=|P(\mathbb{R})|>|\mathbb{R}|$.
10. For each of the following answer "true" or "false". Justify your answer.
a) $\sqrt{\frac{\sqrt{5}}{\sqrt[3]{2}+\sqrt{11}}}$ is constructible.

Solution

Suppose $x=\sqrt{\frac{\sqrt{5}}{\sqrt[3]{2}+\sqrt{11}}}$ is constructible. Then $x^{2}=\frac{\sqrt{5}}{\sqrt[3]{2}+\sqrt{11}}$ is also constructible and hence so is $\frac{1}{x^{2}}=\frac{\sqrt[3]{2}+\sqrt{11}}{\sqrt{5}}$. Since both $\sqrt{5}$ and $\sqrt{11}$ are constructible this implies that $\sqrt[3]{2}$ is constructible too. But $\sqrt[3]{2}$ is a root of the cubic polynomial with rational coefficients $y^{3}-2=0$. If it has a constructible root it also has a rational one. Suppose $\frac{p}{q}$ is a rational root where $\operatorname{gcd}(p, q)=1$. By the rational root theorem we must have that $p \mid-2$ and $q \mid 1$ so that $p= \pm 1, \pm 2, q= \pm 1$ and therefore $p / q=$ $\pm 1, \pm 2$. Plugging these numbers into $y^{3}-2=0$ we see that none are roots.
$1^{3}-2=-1 \neq 0,(-1)^{3}-2=-3 \neq 0,2^{3}-2=6 \neq 0,(-2)^{3}-2=-10 \neq 0$.
Therefore $\sqrt[3]{2}$ is not constructible which mans that $\sqrt{\frac{\sqrt{5}}{\sqrt[3]{2}+\sqrt{11}}}$ is not constructible either.
Answer: False.
b) If x is not constructible then \sqrt{x} is also not constructible.

Solution

If \sqrt{x} is constructible then $x=\sqrt{x} \cdot \sqrt{x}$ is constructible too because the product of two constructible numbers is constructible.
Answer: True.
c) If x is constructible then $\sqrt[8]{x}$ is also constructible.

Solution

Square root of a constructible number is constructible. Therefore if x is constructible then so are $\sqrt{x}, \sqrt{\sqrt{x}}=\sqrt[4]{x}$ and $\sqrt{\sqrt[4]{x}}=\sqrt[8]{x}$.
Answer: True.

